Software Design, Modelling and Analysis in UML

Lecture 5: Object Diagrams

2016-11-10

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

OCL Satisfaction Relation

In the following, .#* denotes a signature and & a structure of ..

n (Satisfaction Rel
Let © be an OCL constraint over . and o € ©% a system state.
We write

« o = pifandonly if 1] (0) = true.
« o £ pifand only if T[] (o, 0) = false.

!

v

°

Note: In general we can't conclude from (¢ |=) to & i or vice versa.
S

Content

o Obiject Constraint Language completed

« Satisfaction Relation, Consistency
» Decidability
(o OCL Critique

o Object Diagrams
« Def
« Graphical Representation

ion

« Partial vs. Complete Object Diagrams

« The Other Way Round

« Obiject Diagrams for Documentation

OCL Consistency

Definition (Consistency). Asetlnv = {1, ..., .} of OCL constraints over . is
and only if there exists a system state of .7 wrt.

JoesZiokp1 AA okE¢n

and inconsistent (or unsatisfiable) otherwise.

OCL Satisfaction Relation

Example: OCL Consistent? - ($ldy, 5041,

§ e fnles, -,
M Vace ¢ m?q\.:m § Teoe Han5or P v

Suare, 3
B
Sy
- E .
@0
K onieiy S

o context Location inv : name = ‘Lobby implies meetingt-> amsn@cw
© context Meeting inv : title = 'Reception implies location . name = "Lobby’

@ alllnstances,

g > exists(w : Meeting | w . title = Reception’)

o codt Meskog v ?&?%E«wi,wu\t Tt led

Yo le > wfe &«.F.E«,d,
ok it 2

Deciding OCL Consistency

« Whether a set of OCL constraints is con:
is in general not as obvious'as in the made-up example.

= Wanted: A procedure which decides the OCL satisfi

OCL Critique

Deciding OCL Consistency

ity problem.

« Whether a set of OCL constraints is consistent or not
is in general not as obvious as in the made-up example.

» Wanted: A procedure which decides the OCL sati

ability problem.
« Unfortunately: in general undecidable.

OCLis as expres:

e as first-order logic over integers.
=22
Axiy e xtg>2? 9= 1

(0568, fere, 63 S fg3])

&:i%«am\vmxww (o] cxsoml) + cqasinti >2%)
2
=
G,
m%&;\ Sy,

\4
o

7

OCL Critique

« Concrete Syntax / Features

“The syntax of OCL has been criticized - e.g. by the authors of Catalysis [..] - for being hard
to read and write.

= OCLs expressions are stacked in the style of Smalltalk,
which makes it hard to see the scope of quantified variables.

« Navigations are applied to atoms and not sets of atoms,
although there is a collect operation that maps a function over a set.

« Attributes, [..], are partial functions in OCL, and result in expressions with undefined
value!" Jackson (2002)

Deciding OCL Consistency

« Whether a set of OCL constraints is consistent or not

is in general not as obvious'as in the made-up example.

* Wanted: A procedure which decides the OCL satisfi

« Unfortunately: in general undecidable.

OCLis as expressive as first-order logic over integers.

=22
Aury e xrg>2? 9=
(6,168, F-u, 63, B fg3)
x “
: e
all st awees , — Existe (ol cxmsal) + cgsonl) 227) 15,€
0 3 \ g,
v
K
« And now? Options: Cabot and Claris (2008)
« Constrain OCL, use a less rich fragment of OCL.
* Revert to finite domains - basic types vs. number of objects.
Ve

OCL Critique

« Expressive Power:
“Pure OCL expressions only compute primitive recursive functions, but not recursive
functions in general”’ Cengarle and Knapp (2001)
'+ Evolution over Time: “finally self.z > 0"
Proposals for fixes e.g Flake and Miller (2003). (Or: sequence diagrams.)

« Real-Time: “Objects respond within 10s”
Proposals for fixes eg. Cengarle and Knapp (2002)

« Reachability: “After insert operation, node shall be reachable””
ix: add transiti

e closure.

10733

You Are Here. Content

o Object Constraint Language completed:

(e Satisfaction Relation, Consistency
o Decidability

L oCL ritique

© Obiject Diagrams

Where Are We?

« Graphical Representation

o Partial vs. Complete Object Diagrams
« The Other Way Round
« Obiject Diagrams for Documentation

U S

1372
Recall: Graph Object Diagrams
Definition. Let 7 be a structure of signature . = (.7, 6, V, atr)
jon. A node-labelled graph is a triple and o € £ asystem state.
G=(N,E,f) Then any node-labelled graph G = (N, E, f) where
- « nodes are alive ol . N C (%) N dom(o),
Object Diagrams consisting of « edges start are labelled with derived type attributes, ie.
o vertexes N, ECNx{v:T€eV|Te€{CouC:|C€€}}xN,
PSSR el gtk ekl it 4
o edges E, =: Vo,1;+ (derived type attributes in .#)
« node labeling f : N — X, where X is some label domain,
« edges correspond to “links” between objects, ..
Yur,uz € Z(%),r € Vo1 : (u1,m,u2) € E = u2 € o(w)(r),
« nodes are labelled with an identity and attribute valuation:
X = (VU {id} » (2(7) U 2(6.)))
Vu€ N : f(u) C {id = {u}} Uo(w)lv, U{r— R| 7€ Vo, R C o(w)(r)}
§ where Vo :={v:T €V |T € 7} (basic type attributes in .&*).
1 H is called object diagram of o-
16723

1473

Object Diagram: Examples

Object Diagram: Examples

o N C 2(%€)Ndom(o) ¢ECN X Vo1 XN o(u1,r,uz) €E = uz €o(w)(r) of:N—+X

©X = (VU {id})»(2(T)U2(&) o f(u)C {id~ {u}} Uy, Ufr— R|RC o(u)(r)}

N C2(¥)Ndom(c) ECNxVouexN o(un,ruz) €E — uz €o(un)r) of:N—X

o X = (VU {id})»(2(7)U2(%.) e f(u) C {id— {u}}Uo(u)lv, U{r— R|RCa(u)(r)}

= (It} {C} s Ity Int,r: CY{C o {wyr})), Z(nt) =Z

o={lgm {z Ly 2,r— {lc,3¢}}}

« G = (N, B, f)with
o nodes N = {1.§
o edgesB=§ (1,018 X
« node labelling / = { ¢ b {d 5 {13, w7, e 33 %

is an object diagram of 0.

UML Notation for Object Diagrams

optional — \
D
wedrdafory e “compartment’
optional

~ optional

= ({Int},{C} {z: Int,y: Int,r: C.}AC v {2,9,7}}), Z(Int) =Z

o={lg{z Ly 2,r— {lc,3c}}}

« G = (N,E,f)with
nodes N = {lc } i

edges E = {(1c, 7, 1c) Yok

» node labelling f = {1 — {id = {1c},z > 1,y — 2} }

is an object diagram of o.

o

7m

Object Diagram: More Examples?

eNC2(%)Ndom(c) *ECN X Vo1 XN o(u,ruz) € B = uz € o(ur)(r) of:N— X
<X = (VL) (2(7) V(@) f(w) € {id {w}} Us(w)lvy Ufr = RI RS a()()}

CHhAC = {v,va,r}}), Z(Int) =2

7 = ({Int}, {C}. {w: Int,y : Inf

ag={lc—{z—Ly=2r—={2}}, 2c~{z—13,y~27,r—0}},

Object Diagram: Examples

e NC 2(¢)Ndom(s) eECNxVoie XN o(up,r,u2) € E => up €o(ur)(r) of:N—X

o X = (VU{id})»(2(7)U2(6.) o f(u)C {id— {u}}Uo(u)lv, U{r— R|RCa(u)(r)}

S = ({Int} (O} {x s Int,y: Int,r: C.}{C s {w,y,7})), P(Int) =7

o={lg— {z— 1Ly~ 2,r- {1c,3c}}}

« G = (N.B, f) with
. nodesN = {1}
o edges E = {(lc,r, 1c) }
. :omm_wvm_::m\.HAHQI:RIAH@THI 1y~ 2} w

is an object diagram of o.

 Yes, and..? G can equi (1) be

172

Complete vs. Partial Object Diagram

Definition. Let G = (N, E, f) be an object diagram of system state o € £%.
We call G complete wrt. o if and only if
o Gis object complete, ie.

ive and “linked” non-alive objects, i.e.

G consists of al

N = dom(c)
* G isattribute complete, i.e.
* G comprises all “links” between objects, i.e.

Yui,uz € N1 € Vot (u1,mu2) € B <= uz € o(ur)(r),

« each nodeis labelled with the values of all 7-typed attributes and the dan-
g fecton resthition
V€ dom(o) o f(u) = {id = u} Uo(w)|v,

U{r e o(u)(r) \ dom(0) | o(w)(r) Z dom(o)}.

gling references,

Otherwise we call G partial.

20733

Complete vs. Partial: Examples

o N C 2(€¢)Ndom(s) ¢ECNx Vo XN e(up,rus) €E = uz €o(wm)(r) of:N—X
o X = (VU {id})»(2(T)U2(%.) o f(u) C {id = {u}} Uo(u)lv, U{r— R|RCo(u)(r)}

= ({Int},{C},

o={lc {zm Ly 21 {20.3¢}), 20 {o s 13,5 27,7 5 0}

Sty Intr: O} AC = o, v2r))), P(nt) =7

UML Object Diagrams

247

Complete/Partial is Relative

» Each object diagram-like graph G represents a st of system states, namely

G™':= {0 € ©% | Gisan object diagram of o'}

« How many?

« Each system state has exactly one complete object diagram.

« Asystem state can have many partial object diagrams

* Observation:

If somebody tells us for a given object
o that itis meant to be complete, and
« if itis not inherently incomplete (e.g. missing attribute values),

then it uniquely denotes the corresponding system state, denoted by o(G).

Therefore we can use complete object diagrams exchangeably with system states,

2m

Discussion

We slightly deviate from the standard (for reasons):
slightly deviate

= Weallow to show non-alive objects.

« Allows us to represent “dangling references’
iLe references to objects which are not alive in the current system state.

+ We introduce a graphical representation of () values.

= Easier to distinguish partial and complete object diagrams

« In the course, Co,1 and C..-typed attributes only have sets as values.
UML also considers multisets, that s, they can have

This is not an object diagram in the sense of our definition
because of the requirement on the edges E.
Exte straightforward but tedious.

Non-Standard Notation

o F = {Int}, {C}{n,p: C.}{C = {n,p}}).

 Instead of

we want to write

=0 e

or

233

The Other Way Round

2673

From Object Diagram to Signature / Structure

« If we only have a diagram like

we typically assume that it is meant to be
an object diagram wrt. some signature and structure.

« In the example, we conclude that the author is referring to some signature
= (T,%,V, atr) with at least
. §¢.Djce
. TET
o T, niCor PGl eV
o oM()2 B)

o ah)2 ferd
and a structure & with
o {1028 <D
o 3 eDED)

.« 0e€ PCTY

Example: Illustrative Object Diagram .

beant [Forest] "

~Hemter

e ote

AcNode | % EiNode | ™ end: Basetode |
o

s
frscria
i parent

s || | tscnid

F:Node

nexsis

Example: Object Diagrams for Documentation

28/3

Tell Them What You've Told Them. ..

.

When using an OCL constraint F to formalise requirements,
we typically ask to ensure o = F.

.

.

System states can graphically be represented
using Object Diagrams.

Our notation is slightly non-standard (for reasons) - mind the
syntax (to not confuse Object and Class Diagrams)!

Object diagrams can be partial or complete,
the author’s got to tell us.

An Object Diagram for a typical system state can be used
as a starting point to design a signature.

Object Diagrams can be used to illustrate/document
how a structure is supposed to be used.

31m

Example: Data Structure s

BaseNode
parent: BaseNode.
~ prevSibling : BaseNode.

+ operator—{

 fstChid: BaseNode.

2973

References

323

References

Cabot, J. and Clariso, R. (2008). UML-OCL verification in practice. In Chaudron, M. R. V., editor, MoDELS.
Workshops, volume 5421 of Lecture Notes in Computer Science. Springer.

Cengarle, M. V. and Knapp, A. (2001). On the expressive power of pure OCL. Technical Report 0101, Institut fiir
Informatik, Ludwig-Maximilians-Universitat Minchen.

Cengarle, M. V. and Knapp, A. (2002). Towards OCL/RT. In Eriksson, L-H. and Lindsay, P. A, editors, FME,
volume 2391 of Lecture Notes in Computer Science, pages 390-409. Springer-Verlag,

Flake, S. and Miiller, W. (2003). Formal semantics of static and temporal state-oriented OCL constraints.
Software and Systems Modeling, 2(3)164-186.

Jackson, D. (2002). Alloy: A lightweight object modelling notation. ACM Transactions on Software Engineering and
Methodology, 11(2):256-290,

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.
OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

Schumann, M., Steinke, |, Deck, A., and Westphal, B. (2008). Traceviewer technical documentation, version 1.0.
Technical report, Carl von Ossietzky Universitat Oldenburg und OFFIS.

333

