-10 - 2016-12-01 - main -

Software Design, Modelling and Analysis in UML

Lecture 10: Modelling Behaviour

2016-12-01

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Content

-10 - 2016-12-01 - Scontent -

o What makes a class diagram
a good class diagram?

—e The Elements of UML 2.0 Style Contd

—e Example: Game Architecture

o Purposes of Behavioural Models
e Constructive Behavioural Models in UML

e UML State Machines

—(e Brief History
—e Syntax

—e The Basic Causality Model

2/32

westphal
Bleistift

-10 -2016-12-01 - main -

Design Guidelines for (Class) Diagram

(partly following Ambler (2005))

3/32

Class Diagram Guidelines Ambler (2005)

-10 - 2016-12-01 - Selementsrest -

e 5.3 Relationships

112. Model Relationships Horizontally

115. Model a Dependency When the Relationship is Transitory

117. Always Indicate the Multiplicity
118. Avoid Multiplicity “x”

119. Replace Relationship Lines with Attribute Types

4/32

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Some Example Class Diagrams

-10 - 2016-12-01 - Selementsrest -

5/32

Some Example Class Diagrams

-10 - 2016-12-01 - Selementsrest -

<3 UL Classbiagramt

[t

Keylngut

[

AitHockey

ScreenMaster

DynamicObject

[<<imertace>> |
Ioamescreen
- 1

AuloPtayer

Saeentuton

5/32

Some Example Class Diagrams

-10 - 2016-12-01 - Selementsrest -

<3 UL Classbiagramt

[

Keylnut |

[

Powerlps

AitHockey

Screenaster

[<<imertace>> |
Ioamescreen
A Y

:
_ ===
= = ==
= S
[
E—1i
]
{
BadAssRacing
Frogram GameHandler
Input Settings
ConsoleOverlay Screens
FameObject RaczeHandling Flayer
Gameiforld Objects " " St Baseplayer
PhyzsicObjact RaceHandler Statistics
2 MinimapCerlay RacesUl Mensch Al
Signs . "
TermainObjects Camera
Flayer Al

5/32

More Example Class Diagrams

-10 - 2016-12-01 - Selementsrest -

humanPlayer and
random appearance
of powerups

1 camera
1
| view background sound sound !
2dCamera 3dCamera table
0.*
JAN
1 1
1
introView menuView playView physicalObject 4 . shape
1 2.
observes and updates
AN JAN
1 1 1 1
mainMenu configMenu settingsMenu highscoreView pauseView 4 particleFactory 4 0 particleSystem bat puck powerup border goal
creates
0.1 0.1 0.1
player
1 1 1 gets input from 2.4
settings for gameConfig gameSettings
the next .
game match informs
only
(not saved)
1 1 =
0.4 aiPlayer humanPlayer
1 1
game
for replay.
logs input from
1 non-deterministic 1
sources, i.e. from
eventLog gamepadPlayer keyboardPlayer

6/32

-10 -2016-12-01 - main -

Example: Modelling Games

7/32

Modelling Structure: Common Architectures

e Many domains have common, canonical architectures.

o For games, for example:

-10 - 2016-12-01 - Stron -

8/32

Modelling Structure: Common Architectures

-10 - 2016-12-01 - Stron -

e Many domains have common, canonical architectures.
o For games, for example:

Main
External inputs Game Logic
 Keyboard o player scores Output
o Joystick e interface inputs/engine o Graphics (from

2
—_
ASCIl to bitmap;
" native or via API)
/

update notify

e Sound

(Physics) Engine

physical objects
collision notification

o Adept readers try to see/find/match the common architecture
if they know that a model is from a particular domain.

o We can do those readers a favour by grouping/positioning things in the diagram
so that seeing/finding/matching is easy.

8/32

westphal
Bleistift

westphal
Bleistift

Example Re-C

onsidered

-10 - 2016-12-01 - Stron -

camera

humanPlayer and
random appearance
of powerups

| view background sound sound
2dCamera 3dCamera
0.*
\
AN

71\ |

1
introView menuView playView physicalObject 4 1 shape
1 2.
observes al ates
AN JAN
1 1 1 1
mginMenu configMenu settingsMenu highscoreView pauseView 4 particleFactory 4 0 particleSystem bat puck powerup border goal
creates
\
0.1 0.1 0.1 \\
player N
1 1 1 gets input 1romﬁ
gameConfig gameSettings n
informs "‘ﬁé‘
(not saved)
* y
[~ 0.4 aiPlayer humanPlayer
/T-‘ -
game
for replay.
logs input from
1 non-deterministic 1
sources, i.e. from
eventLog gamepadPlayer keyboardPlayer

9/32

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

-10 -2016-12-01 - main -

Modelling Behaviour

10/32

Stocktaking...

-10 -2016-12-01 - Sbehav -

Have: Means to model the structure of the system.

o Class diagrams graphically, concisely describe sets of system states.
o OCL expressions logically state constraints/invariants on system states.

Want: Means to model behaviour of the system.

e Means to describe how system states evolve(over time>
that is, to describe sets of sequences

w

0'0,0'1,"'62

of system states.

11/32

westphal
Bleistift

What Can Be Purposes of Behavioural Models?

-10 -2016-12-01 - Sbehav -

Example: Pre-lmage
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

12/32

What Can Be Purposes of Behavioural Models?

-10 -2016-12-01 - Sbehav -

Example: Pre-lmage
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

e Require Behaviour.

“This sequence of inserting money and requesting and getting water must be possible.”

(Otherwise the software for the vending machine is completely broken.)

12/32

What Can Be Purposes of Behavioural Models?

-10 -2016-12-01 - Sbehav -

Example: Pre-lmage
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

e Require Behaviour.

“This sequence of inserting money and requesting and getting water must be possible.”
(Otherwise the software for the vending machine is completely broken.)

o Allow Behaviour.

‘After(inserting money and choosing a drink) the drink is dispensed (if in stock).”
(If the implementation insists on taking the money first, that's a fair choice.)

12/32

westphal
Bleistift

What Can Be Purposes of Behavioural Models?

-10 -2016-12-01 - Sbehav -

Example: Pre-lmage
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

e Require Behaviour.

“This sequence of inserting money and requesting and getting water must be possible.”
(Otherwise the software for the vending machine is completely broken.)

o Allow Behaviour.

“After inserting money and choosing a drink, the drink is dispensed (if in stock).”
(If the implementation insists on taking the money first, that's a fair choice.)

e Forbid Behaviour.

“This sequence of getting both, a water and all money back, must not be possible.” (Otherwise
the software is broken.)

12/32

What Can Be Purposes of Behavioural Models?

-10 -2016-12-01 - Sbehav -

Example: Pre-lmage
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

e Require Behaviour.

“This sequence of inserting money and requesting and getting water must be possible.”
(Otherwise the software for the vending machine is completely broken.)

o Allow Behaviour.

“After inserting money and choosing a drink, the drink is dispensed (if in stock).”
(If the implementation insists on taking the money first, that's a fair choice.)

e Forbid Behaviour.

“This sequence of getting both, a water and all money back, must not be possible.” (Otherwise
the software is broken.)

Note: the latter two are trivially satisfied by doing nothing...

12/32

What Can Be Purposes of Behavioural Models?

-10 -2016-12-01 - Sbehav -

Example: Pre-Image Image
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

e Require Behaviour. “System definitely does this”

“This sequence of inserting money and requesting and getting water must be possible.”
(Otherwise the software for the vending machine is completely broken.)

o Allow Behaviour. “System does subset of this”

“After inserting money and choosing a drink, the drink is dispensed (if in stock).”
(If the implementation insists on taking the money first, that's a fair choice.)

o Forbid Behaviour. “System never does this”

“This sequence of getting both, a water and all money back, must not be possible.” (Otherwise
the software is broken.)

Note: the latter two are trivially satisfied by doing nothing...

12/32

Constructive Behaviour in UML

-10 -2016-12-01 - Sbehav -

UML provides two visual formalisms for constructive description of behaviours:
o Activity Diagrams
e State-Machine Diagrams

We (exemplary) focus on State-Machines because

e somehow “practice proven’ (in different flavours),
e prevalent in embedded systems community,
e indicated useful by Dobing and Parsons (2006) survey, and

o Activity Diagrams intuition changed (between UML 1.x and 2.x)
from transition-system-like to petri-net-like...

o Example state machines: A n ™
01
| c D]
x ¢ vE 01

En#0/x:=xz+ 1;n!F

52 F/
F/x:=0 /n =10 /p! F

13/32

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Course Map ik

-10 -2016-12-01 - Sbehav -

ch{\"“
N
(-
S ¥ .9
CD, SM p € OCL CD, SD s

5ty

!
=(7,%,V, atr), SM

S, SD

&,

B = (Qsp,q,A»,—sp, Fsp)

ce N Wy = ((O'Z', cons;, Sndz))zE]N

14/32

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

-10 -2016-12-01 - main -

UML State Machines: Overview

15/32

UML State Machines

-10 - 2016-12-01 - Sstmover -

'\@ Eln # 0)/a =

F/x:=0

Brief History:

r+1;n!F
—c
/m:=10

16/32

UML State Machines

-10 - 2016-12-01 - Sstmover -

e /D
F/x:=0 /n:=10

N

Brief History:

e Rooted in Moore/Mealy machines, Transition Systems, etc.

16/32

UML State Machines

-10 - 2016-12-01 - Sstmover -

e /D
F/x:=0 /n:=10

N

Brief History:
e Rooted in Moore/Mealy machines, Transition Systems, etc. @

o Harel (1987): Statecharts as a concise notation, J "
introduces in particular hierarchical states. «_

16/32

westphal
Bleistift

UML State Machines

-10 - 2016-12-01 - Sstmover -

e /D
F/x:=0 /n:=10

Brief History:
e Rooted in Moore/Mealy machines, Transition Systems, etc.

o Harel (1987): Statecharts as a concise notation,
introduces in particular hierarchical states.

e Manifest in tool Statemate Harel et al. (1990) (simulation, code-generation);
nowadays also in Matlab/Simulink, etc.

16/32

UML State Machines

-10 - 2016-12-01 - Sstmover -

S
Fle:=0 /n =10

Brief History:

Rooted in Moore/Mealy machines, Transition Systems, etc.

Harel (1987): Statecharts as a concise notation,
introduces in particular hierarchical states.

Manifest in tool Statemate Harel et al. (1990) (simulation, code-generation);
nowadays also in Matlab/Simulink, etc.

Frorn UML 1.x on: State Machines
(not the official name, but understood: UML-Statecharts)

16/32

UML State Machines

-10 - 2016-12-01 - Sstmover -

A En#0|/z:=xz+ 1;n!F

/m:=10

F/x:=0

Brief History:

Rooted in Moore/Mealy machines, Transition Systems, etc.

Harel (1987): Statecharts as a concise notation,
introduces in particular hierarchical states.

Manifest in tool Statemate Harel et al. (1990) (simulation, code-generation);

nowadays also in Matlab/Simulink, etc.

Frorn UML 1.x on: State Machines
(not the official name, but understood: UML-Statecharts)

Late 1990's: tool Rhapsody with code-generation for state machines.

16/32

UML State Machines

-10 - 2016-12-01 - Sstmover -

Brief History:

A En#0|/z:=xz+ 1;n!F

[51]

F/x:=0 /n =

Rooted in Moore/Mealy machines, Transition Systems, etc.

Harel (1987): Statecharts as a concise notation,
introduces in particular hierarchical states.

Manifest in tool Statemate Harel et al. (1990) (simulation, code-generation);
nowadays also in Matlab/Simulink, etc.

Frorn UML 1.x on: State Machines
(not the official name, but understood: UML-Statecharts)

Late 1990's: tool Rhapsody with code-generation for state machines.

Note: there is a coommon core, but each dialect interprets some constructs subtly
different Crane and Dingel (2007). (Would be too easy otherwise...)

16/32

westphal
Bleistift

westphal
Bleistift

Roadmap: Chronologically

-10 - 2016-12-01 - Sstmover -

Syntax:

UML State Machine Diagrams.
Def.: Signature with signals.
Def.: Core state machine.

Map UML State Machine Diagrams
to core state machines,

Semantics:
The Basic Causality Model

Def.: Ether (aka. event pool)
Def.: System configuration.
Def.: Event. ot 1,

@)
Def.: Transformer. n!lF

Def.: Transition system, computation.

4
S =
(74
M=

Transition relation induced by core state ma-

chine.
Def.: step, run-to-completion step.

Later: Hierarchical state machines.

CD,SM

(7,6,V,atr), SM

(227 Aya _>S'M)

v

™ = (0'0,6()>

Vuo

(RS

OCL

expr

v

(comsg,Sndg)
e

G=(N,E,f)

v/

(01,61)~ ..

OD

7. SD

B = (QSDaquAya_>SD7FSD)

Wr = ((Ji7 cons;, Sndl))ZE}N

17/32

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

-10 -2016-12-01 - main -

UML State Machines: Syntax

18/32

Signature With Signals

Definition. A tuple
S =(T,6,V, atr, &), & a set of signals,
is called signature (with signals) if and only if
(7,U&,V, atr)

is a signature (as before).

-10 - 2016-12-01 - Sstmsyn -

19/32

Signature With Signals

Definition. A tuple
S =(T,6,V, atr, &), & a set of signals,
is called signature (with signals) if and only if
(7,U&,V, atr)

is a signature (as before).

Note: Thus conceptually, a signal is a class and can have attributes of plain type, and
participate in associations.

-10 - 2016-12-01 - Sstmsyn -

19/32

Signature with Signals: Example

@é&é{e% (76\(S\IV’YPZ’@{@ /
F’X“% signal)
E % (signat)
0.1 F
C c x : Int
(isignal)
G

fj(g(wg/ LS Taile, e Gy,
S g, Enp) G il TP fdf/
{fglﬁé?>

-10 - 2016-12-01 - Sstmsyn -

20/32

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Core State Machine

-10 - 2016-12-01 - Sstmsyn -

Definition.
A core state machine over signature . = (7, %, V, atr, &) is a tuple

M = (S, S0, —>)

where

S is a non-empty, finite set of (basic) states,

ate, - sowce shdt L& Aw;ézf

so € Sis an initial st

and / v/

S CSx(&U X B X Act » XS
C 5 x (60 {) x Bapry x ety

7

Ve

trigger guard action

is a labelled transition relation.

We assume a set Fxpr ., of boolean expressions over . (for instance
OCL, may be something else) and a set Act &~ of actions.

21/32

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

From UML to Core State Machines: By Example

-10 - 2016-12-01 - Sstmsyn -

UML state machine diagram SM:
g | p(/t‘la'f&s ti" H’"‘/ SAQ[C
,\xf//— st /

@ annot @

ev[ac(] / act

annot = | (event)[. (event)]* | |[{guard)1| [/ [{action)] |

with

e event € &,

o guard € Ezxpr (default: true, assumed to be in Expr)
e action € Act » (default: skip, assumed to be in Act &)
maps to

MOH) = (L5 Tsbl(s,, e, gy o, 1)

22/32

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Abbreviations and Defaults in the Standard

Reconsider the syntax of transition annotations:
annot = | (event)[. (event)]* | | [{guard)1| |/ [{action)] |

where event € &, guard € Expr o, action € Act .

-10 - 2016-12-01 - Sstmsyn -

23/32

Abbreviations and Defaults in the Standard

Reconsider the syntax of transition annotations:
annot = | (event)[. (event)]* | | [{guard)1| |/ [{action)] |

where event € &, guard € Expr o, action € Act .

What if things are missing?

. [WJ / S/U}P
[T/ sl
E | tel/ s/r,l)o
- Dhae 3/ act
E [ten] / act

/ act
E / act

&
IR

-10 - 2016-12-01 - Sstmsyn -

23/32

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Abbreviations and Defaults in the Standard

Reconsider the syntax of transition annotations:

annot = | (event)[. (event)]* | | [{guard)1| |/ [{action)] |

where event € &, guard € Fxpr o, action € Act ». — E.?‘/cch>c7
What if things are missing? S22
S e
~ Tt
/ o
E/ o
[act ~~
E /act ~~

In the standard, the syntax is even more elaborate:

e F(v) -— when consuming F in object v,
attribute v of u is assigned the corresponding attribute of E.

o FE(v:T)-similar, but v is a local variable, scope is the transition

-10 - 2016-12-01 - Sstmsyn -

23/32

westphal
Bleistift

State-Machines belong to Classes

In the following, we assume that

e a UML model consists of a set €7 of class diagrams and
a set .2/ of state chart diagrams (each comprising one state machine SM).

o each state machine SM € .4 is associated with a class Csyq € ().

-10 - 2016-12-01 - Sstmsyn -

24/32

State-Machines belong to Classes

-10 - 2016-12-01 - Sstmsyn -

In the following, we assume that

e a UML model consists of a set €7 of class diagrams and
a set .2/ of state chart diagrams (each comprising one state machine SM).

o each state machine SM € .4 is associated with a class Csyq € ().

o For simplicity, we even assume a bijection, i.e. we assume that each class
C € ¢ (%) has a state machine SM and that its class Cs . is C.

If not explicitly given, then this one:
o RN
SMy := ({50}, 50, fsortruesskiprsg)). (S0

We will see later that this choice does no harm semantically.

24/32

westphal
Bleistift

westphal
Bleistift

State-Machines belong to Classes

-10 - 2016-12-01 - Sstmsyn -

In the following, we assume that

e a UML model consists of a set €7 of class diagrams and
a set .2/ of state chart diagrams (each comprising one state machine SM).

o each state machine SM € .4 is associated with a class Csyq € ().

o For simplicity, we even assume a bijection, i.e. we assume that each class
C € ¢ (%) has a state machine SM and that its class Cs . is C.

If not explicitly given, then this one:
SMy = ({80}7 S0, (807 _, true, skip, SO))

We will see later that this choice does no harm semantically.

Intuition 1: SM describes the behaviour of the instances of class C.
Intuition 2: Each instance of class C' executes SM .

24/32

State-Machines belong to Classes

-10 - 2016-12-01 - Sstmsyn -

In the following, we assume that

e a UML model consists of a set €7 of class diagrams and
a set .2/ of state chart diagrams (each comprising one state machine SM).

o each state machine SM € .4 is associated with a class Csyq € ().

o For simplicity, we even assume a bijection, i.e. we assume that each class
C € ¢ (%) has a state machine SM and that its class Cs . is C.

If not explicitly given, then this one:
SMO c= ({30}7 S0, (807 _, true, skip, SO))

We will see later that this choice does no harm semantically.

Intuition 1: SM describes the behaviour of the instances of class C.
Intuition 2: Each instance of class C' executes SM .

Note: we don't consider multiple state machines per class. We will see later that this case can
be viewed as a single state machine with as many AND-states.

24/32

-10 -2016-12-01 - main -

Rhapsody Demo 11

25/32

-10 -2016-12-01 - main -

Towards UML State Machines Semantics:
The Basic Causality Model

26/32

6.2.3 The Basic Causality Model (omG, 2011b, 11)

-10 - 2016-12-01 - Sstmcaus -

“Causality model’ is a specification of how things happen at run time [...].

The causality model is quite straightforwarc;:

o Objects respond to messages that are generated by objects executing
communication actions.

o When these messages arrive, the receiving objects eventually respond by executing
the behavior that is matched to that message.
NN

o The dispatching method by which a particular behavior is associated with a given
message depends on the higher-level formalism used and is not defined in the UML

specification
(i.e., it is a semantic variation point).

En#0)/x:=x+ 1;n!F

F/
F/x:=0 Jn =0 /p! F

27/32

westphal
Bleistift

westphal
Bleistift

6.2.3 The Basic Causality Model (omG, 2011b, 11)

-10 - 2016-12-01 - Sstmcaus -

“Causality model’ is a specification of how things happen at run time [...].

The causality model is quite straightforward:

o Objects respond to messages that are generated by objects executing
communication actions.

o When these messages arrive, the receiving objects eventually respond by executing
the behavior that is matched to that message.

o The dispatching method by which a particular behavior is associated with a given
message depends on the higher-level formalism used and is not defined in the UML
specification
(i.e., it is a semantic variation point).

The causality model also subsumes behaviors invoking each other and passing
information to each other through arguments to parameters of the invoked behavior,

[..]

This purely procedural’ or process’ model can be used by itself or in conjunction with
the object-oriented model of the previous example.”

27/32

15.3.12 StateMachine (omG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

28/32

15.3.12 StateMachine (omG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

e Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

28/32

15.3.12 StateMachine (omG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

e Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

o The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

28/32

15.3.12 StateMachine (omG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

e Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

o The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

e Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

28/32

15.3.12 StateMachine (omG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

28/32

15.3.12 StateMachine (omG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

28/32

15.3.12 StateMachine (omG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

e The same conditions apply after the run-

to-completion step is completed.

28/32

15.3.12 StateMachine (omG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

e The same conditions apply after the run-

to-completion step is completed.

e Thus, an event occurrence will never be
processed|[...] in some intermediate and in-

consistent situation.

28/32

15.3.12 StateMachine (omG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

e The same conditions apply after the run-

to-completion step is completed.

e Thus, an event occurrence will never be
processed|[...] in some intermediate and in-

consistent situation.

e [IOW,] The run-to-completion step is the
passage between two istate configurations

of the state machine. $*&&

28/32

westphal
Bleistift

15.3.12 StateMachine (omG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

The same conditions apply after the run-
to-completion step is completed.

Thus, an event occurrence will never be
processed|[...] in some intermediate and in-
consistent situation.

[IOW,] The run-to-completion step is the
passage between two state configurations
of the state machine.

The run-to-completion assumption sim-
plifies the transition function of the StM,
since concurrency conflicts are avoided
during the processing of event, allowing
the StM to safely complete its run-to-
completion step.

28/32

15.3.12 StateMachine (omaG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

The same conditions apply after the run-
to-completion step is completed.

Thus, an event occurrence will never be
processed|[...] insome intermediate and in-
consistent situation.

[IOW,] The run-to-completion step is the
passage between two state configurations
of the state machine.

The run-to-completion assumption sim-
plifies the transition function of the StM,
since concurrency conflicts are avoided
during the processing of event, allowing
the StM to safely complete its run-to-
completion step.

The order of dequeuing is ,
leaving open the possibility of modeling
different priority-based schemes.

28/32

15.3.12 StateMachine (omaG, 2011b, 574)

-10 - 2016-12-01 - Sstmcaus -

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

The same conditions apply after the run-
to-completion step is completed.

Thus, an event occurrence will never be
processed|[...] insome intermediate and in-
consistent situation.

[IOW,] The run-to-completion step is the
passage between two state configurations
of the state machine.

The run-to-completion assumption sim-
plifies the transition function of the StM,
since concurrency conflicts are avoided
during the processing of event, allowing
the StM to safely complete its run-to-
completion step.

The order of dequeuing is ,
leaving open the possibility of modeling
different priority-based schemes.

Run-to-completion may be implemented

in L]

28/32

Example

-10 - 2016-12-01 - Sstmcaus -

((signal)

C n E
x: Int p 0..1 D
0..1 {(signal))
F
En#0]/x:=xz+ 1;n!F
SMp

52 ’ F/ :
—
F/x:=0 /n =10 /p!' F

29/32

((signal)

C
Example _ ’
0..1
.
SMc #0)/x:=x+ 1;n! F

{(signal))

[
_—

-10 - 2016-12-01 - Sstmcaus -

SMp

29/32

westphal
Bleistift

-10 - 2016-12-01 - Sstmcaus -

((signal)

C
Example _ ’
0..1
.
SMc #0)/x:=x+ 1;n! F

{(signal))

SMp

29/32

Example

-10 - 2016-12-01 - Sstmcaus -

SMc

st = 81
stb =1

n {(signal))
E

x: Int

p

0..

1

#0)/x:=x+ 1;n! F

plin

st = 81
sthb=1

to uy

N\

((signal)
F

Mp

F/ :S
/P! F

29/32

-10 - 2016-12-01 - Sstmcaus -

C n
Example ¢ - — X
0..1
.
SMce #0/r:=x+ 1;n!F
\ F/
51
F/sc\o /Q) oL /p'F

ske

b\)‘/vvl' \nas wl/a}‘(nod

trswind] bose stut d//”
{E}{F})
(01,€1) - 02,€2)
o s 1o
I Vo dd bo I \
I | IO« P I \
\ % \
u : C \ uy : C \
x =27 \ x =28 \
st = 81 St = 89
sthb =1 usg : K stb =10 uy 2 F
plin to uy plin to s
ug D ug 1 D
st = 81 st = s1
sth =1 sth =1

((signal)

((signal)

29/32

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Example

-10 - 2016-12-01 - Sstmcaus -

x: Int

0..1

SMc: \@ En#0]/z:=x+ 1;n!F
{ENAFY)
(01,€1) 02,€2)
I \ I \
I \ I \
I \ I \
\ \
u : C \ uy : C \
x =27 \ x =28 \
st = 81 St = 89
sthb =1 usg : K stb =10 uy 2 F
plin to uy plin to s
ug D ug 1 D
st = 81 st = s1
stb =1 stb =

/P! F

(0-3763)
I \
I \
I \
\
up : C \
xr =28 \
st = s3
sth = uy 2 F
pT to usg
ug : D
st = 57
sth =

((signal)

((signal)

SMp

29/32

westphal
Bleistift

((signal)
C n E
Example _ ’ -
((signal)
. V/_} ‘r‘o sd,f n al
SMc #0]/z:=x+ 1L;n! F
SMp

F/x\o ni=0

Y J'l'b - Cd"beCdL‘lm/l S?ép
[_/_,_/\

0\ F/
/P! F

-10 - 2016-12-01 - Sstmcaus -

{E}L{FY}) (0,0) ({£F'},0)
(01,€1) 092, €2 03,€3) 04,€4) ~> (55,
U1 ul u2
I\ I\ I\ I\ i
I \ I \ I \ I \
! 1 ! 1 I \ I \ (QJ
\ \ \ \ B«
uy : C \ uy : C \ uy - C \ uy : C \
z =27 \ z = 28 \ z =28 \ z = 28 \
st = 851 st = 89 st = s3 st = Ss3 '
sth =1 us: B sth =0 uy : F sth =10 uy : F stb =1
pT ln to u; pT ln to uo pT to ug pT
ug D ug 1 D ug i D ug D
st = 81 st = 81 st = 57 st = 39
sthb=1 sth = sth=1 sth =

29/32

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Tell Them What You’ve Told Them. . .

-10 - 2016-12-01 - Sttwytt -

Ambler (2005): The Elements of UML 2.0 Style.

One rule-of-thumb:
if there is a standard architecture, make it easy to recognise how
the standard architecture is concretised.

Behaviour can be modelled using UML State Machines.
UML State Machines are inspired by Harels Statecharts.
State Machines belong to Classes.

State machine behaviour follows
the Basic Causality Model of UML,
in particular

o Obijects process events.

e Objects can be stable or not.

e Events are processed in a run-to-completion step,
processing only starts when being stable,

30/32

-10 -2016-12-01 - main -

References

31/32

References

-10 -2016-12-01 - main -

Ambler, S. W.(2005). The Elements of UML 2.0 Style. Cambridge University Press.

Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models are
created equal. Software and Systems Modeling, 6(4):415-435.

Dobing, B. and Parsons, |. (2006). How UML is used. Communications of the ACM, 49(5):109-114.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231-274.

Harel, D., Lachover, H., et al. (1990). Statemate: A working environment for the development of
complex reactive systems. IEEE Transactions on Software Engineering, 16(4):403-414.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.

32/32

	Content
	Design Guidelines for (Class) Diagram[](partly following Ambler2005)
	Class Diagram Guidelines Ambler2005
	Some Example Class Diagrams
	More Example Class Diagrams

	Example: Modelling Games
	Modelling Structure: Common Architectures
	Example Re-Considered

	Modelling Behaviour
	Stocktaking...
	What Can Be Purposes of Behavioural Models?
	Constructive Behaviour in UML
	Course Map

	UML State Machines: Overview
	UML State Machines
	Roadmap: Chronologically

	UML State Machines: Syntax
	Signature With Signals
	Signature with Signals: Example
	Core State Machine
	From UML to Core State Machines: By Example
	Abbreviations and Defaults in the Standard
	State-Machines belong to Classes

	Rhapsody Demo II
	Towards UML State Machines Semantics: The Basic Causality Model
	6.2.3 The Basic Causality Model [11]OMG2011b
	15.3.12 StateMachine [574]OMG2011b
	Example
	Tell Them What You've Told Them…

	References
	References

