
Software Design, Modelling and Analysis in UML

Errata for the Course Slides

February 15, 2017

Contents

Lecture 10: Modelling Behaviour 1
Slide 22, ‘From UML to Core State Machines: By Example’ 1

Lecture 13: Core State Machines III 1
Slide 5, ‘Discarding an Event’ . 1

Lecture 14: Hierarchical State Machines I 1
Slide 11, ‘Create Transformer Example’ . 1

Lecture 15: Hierarchical State Machines II 2
Slide 19, ‘Scope’ . 2

Lecture 16: Hierarchical State Machines III 2
Slide 12, ‘Initial Pseudostate’ . 2

Lecture 18: Live Sequence Charts II (NEW) 2
Slide 43, ‘Words over Signature’ . 2

Tutorial 5: State Machines 2
Slide 5, ‘Exercise 4.(i)’ . 2

Lecture 10: Modelling Behaviour

Slide 22, ‘From UML to Core State Machines: By Example’

The initial state component of a core state machine is not a set, so the ‘maps to’ notes at the
bottom of the slide should read:

M(SM) = ({s1, s2}, s1, {(s1, ev , gd , act , s2)})

1

Lecture 13: Core State Machines III

Slide 5, ‘Discarding an Event’

Checking whether any transition is enabled should also use σ̃ as defined on Slide 6 (which sets
up the corresponding, transient ‘param’ link). A transition may in particular not be enabled
because the parameters of an event do not satisfy the transition’s guard.

Lecture 14: Hierarchical State Machines I

Slide 11, ‘Create Transformer Example’

The annotations of the transition arrows should read

(∅,{(∗,2C)})−−−−−−−→
u

etc. (First component on top is cons (‘consumed set’), second component is Snd (‘sent set’,
which includes creation and destruction), and below is the object which does this step.)

Lecture 15: Hierarchical State Machines II

Slide 19, ‘Scope’

The scope of transition t is the union of the transitive and reflexive children of the states in
the least common region of source(t) ∪ target(t) (not just the least common region).

Otherwise, some transitions in Exercise Sheet 6.A would unintentionally become consistent.

Lecture 16: Hierarchical State Machines III

Slide 12, ‘Initial Pseudostate’

The description of the principle is maybe a bit too much ‘natural-languagy’. A more precise
description may be:

• when taking a transition (with multiple target states),

• consider the least common ancestor of the target states and

• for each region of the lca for which the transition does not have a basic state target,

• use the region’s initial state as indicated by a transition from an initial pseudo-state.

• Continue to choose initial states of all child states of the considered region.

Lecture 18: Live Sequence Charts II (NEW)

Slide 43, ‘Words over Signature’

The language of a UML model is a set of words over the signature named on the slide (not
just one word).

2

Tutorial 5: State Machines

Slide 5, ‘Exercise 4.(i)’

Somebody proposed the step from Line 0 to Line 1 as an example for a run-to-completion
(RTC) step. Sticking to our definition, this is wrong: an RTC-step needs to begin with a
‘dispatch’ (in this case an event is only discarded).

3

	Lecture 10: Modelling Behaviour
	Slide 22, `From UML to Core State Machines: By Example'

	Lecture 13: Core State Machines III
	Slide 5, `Discarding an Event'

	Lecture 14: Hierarchical State Machines I
	Slide 11, `Create Transformer Example'

	Lecture 15: Hierarchical State Machines II
	Slide 19, `Scope'

	Lecture 16: Hierarchical State Machines III
	Slide 12, `Initial Pseudostate'

	Lecture 18: Live Sequence Charts II (NEW)
	Slide 43, `Words over Signature'

	Tutorial 5: State Machines
	Slide 5, `Exercise 4.(i)'

