-9 -2016-11-29 - main -

-9 -2016-11-29 - Scontent -

Software Design, Modelling and Analysis in UML

Lecture 9: Class Diagrams IV

2016-11-29

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Content

e Associations: The Rest

o Visibility, Navigability, Properties,
e Ownership, “Diamonds”,
o Multiplicity

o Back to the Main Track

e OCL in (Class) Diagrams

o What makes a class diagram

a good class diagram?

e Web-Shop Examples
e The Elements of UML 2.0 Style
e Example: Game Architecture

2/38

-9 -2016-11-29 - main -

Multiplicities

-9 -2016-11-29 - Sassocrestrest -

CD:

Associations: The Rest

role1 C

0.1 "y Int 4,17
roles
roles | 3..x

Coxa-lt%t/: C v ro(L3~>&'Zc >3

3/38

4/38

Multiplicities as Constraints

9 -2016-11-29 - Sassocrestrest

Recall: Multiplicity is a term of the form N1.. N>, ..., Nog—1..Noy
whereNi§N¢+1for1§i§2k, Ni,...,Nog—1 € N, NQkG]NU{*}. @---\5[
vole.

Define uS¢ (role) =

context C'inv: (N1 < role ->size() < Nz) or ... or (Nak—1 < role ->size() < Nai)
—

omitif Nojp = =

foreach 1+ ... (role : Dty _y_,_,)y, (r0le’ :(C)—_, o, _),...) €V or

(r:...,{role @_,_,_,_,_),...,(role Dy,),) EV,
with role # role’, if ;1 # 0..1, u # 1..1, and

1ScL (role) == context C'inv : not(ocllsUndefined(role))

if p=1..1.

, L : ¢ D
Note: in n-ary associations with n > 2, there is redundancy. (5

5/38

Multiplicities as Constraints Example

9 -2016-11-29 - Sassocrestrest

S (role) = context C'inv :
(N1 < role ->size() < N3) or ... or (Nog—1 < role ->size() < Nag)

1S (role) = context C'inv : not(ocllsUndefined(role))

CD:

roley C
0.1 [v: Int 4,17
roles

roles | 3..x f/\ E4 13
o ot SV 3 & wley - s2el)

o Conlend C v el sedll o0 1FL wl, > swlL |2

6/38

main

9 -2016-11-29

Back to the Main Track

Back to the main track:

-9 -2016-11-29 - Sback -

7/38

Recall: on some earlier slides we said, the extension of the signature is only to study
associations in “full beauty’”
For the remainder of the course, we should look for something simpler...

Proposal:

e from now on, we only use associations of the form

(i)

(ii)

c

role

*

role

D

~ (7

(And we may omit the non-navigability and ownership symbols.)

o Form (i) introduces role : B%,1, and form (i) introduces role : D, in the set of attributes V.
AN

e Inboth cases, role € atr(C).

A

o We drop A and go back to our nice o with o (u)(role) C 2(D).
~

8/38

-9 -2016-11-29 - main -

OCL Constraints in (Class) Diagrams

9/38

Where Shall We Put OCL Constraints?

-9 -2016-11-29 - Socldia -

Three options:

(0) Separate document.
(i) Notes.
(i) Particular dedicated places.

(i) Notes:

A UML note is a picture of the form doals eas

J
ﬂ Eselsolir)

tezt can principally be everything, in particular comments and constraints.

Sometimes, content is gg(_gﬁc/it\ly/c\lis/slfi/e\c’! for clarity:

OCL:

erpr

10/38

OCL in Notes: Conventions

-9 -2016-11-29 - Socldia -

expr Ij

stands for

context C'inv : expr Il‘

/38

Where Shall We Put OCL Constraints?

-9 -2016-11-29 - Socldia -

(ii) Particular dedicated places in class diagrams: (behavioural features: later)

C
Ev:TH{p1,...,pn} {expr}
gf(vl :Ta"'avn Tn) :T{plw",pn} {pre P expry
7 post : exprs,}
bdoéviowa(
Tokore
For simplicity, we view the above as an abbreviation for

expr 5

C |
Ev:Top1,...,pn}

context f pre : expr, post : expr, B‘

12/38

Invariants of a Class Diagram

-9 -2016-11-29 - Socldia -

o Let CD be aclass diagram.
o We are (now) able to recognise OCL constraints when we see them, so define

Inv(CD)

as the set {1, ..., p,} of OCL constraints occurring in notes in CD - after
unfolding all graphical abbreviations (cf. previous slides).

o As usual: consider all invariants in all notes in any class diagram - plus implicit
multiplicity-induced invariants.

aey WL'U%"* Hee
(=1
nv(e7) = |J ivepyu e 0
CDe€¢2
{uga_(role) | (r:....{role:D,p,_ _,_,_),...,{role’ : C,_,_,_,_,_),...) €Vor
(r:....{(role’ - C,_,_,_,_,_),...,{role : Dty _, _,_,_),...) € V}.

e Analogously: Inv(-) for any kind of diagram (like state machine diagrams).

13/38

Semantics of a Class Diagram

-9 -2016-11-29 - Socldia -

Definition. Let 2 be a set of class diagrams.

We say, the semantics of ¢’ is the signature itinduces and the set of OCL
constraints occurring in ¢ 2, denoted

[€2] = (S (€D),Inv(ED)).

Given a structure 2 of . (and thus of ¥ 2), the class diagrams describe
the M, of which some may satisfy Inv(%'2).

In pictures:
€9 ={CDxy,..., CD,}
1 T~
signature (¢ 2) invariants Inv(¢2)
basic distinguish extended
(classes and (visibility, etc.)
attributes)

14/38

Pragmatics

-9 -2016-11-29 - Socldia -

Recall: a UML model is an image or pre-image of a software system.

A set of class diagrams € 2 describes the structure of system states.

Together with the invariants Inv(% 2) it can be used to state:

o Pre-image: Dear programmer, please provide an implementation which uses only system
states that satisfy Inv(4 2).

o Post-image: Dear user/maintainer, in the existing system, only system states which satisfy
Inv(€¢ 2) are used.
AN~

(The exact meaning of “use” will become clear when we study behaviour - intuitively: the system states
that are reachable from the initial system state(s) by calling methods or firing transitions in state-machines.)

Example: highly abstract model of traffic lights controller.

not(red and green)
TLC .
red : Bool -
green : Bool

15/38

Course Map

9 -2016-11-29 - main

<, 58D

B =(Qsp,q0,Av,—sp, Fsp)

(consg,Sndo)
0,5ndo (01,61)- - wr = ((0;, cons;, Sndi))ie]N

16/38

-9 -2016-11-29 - main -

Design Guidelines for (Class) Diagram

(partly following Ambler (2005))

Some Web-Shop Class Diagrams

17/38

-9 -2016-11-29 - Selements -

18/38

A Closer Look

-9 -2016-11-29 - Selements -

FrontEnd

BackEnd

= name:string

= id:string

ltem

= name:string

= price:float
= in_stock:int=0
= resened:int=0

itsSession_| *
Session
= id:string itsltem
“itsSession

't
T (ot wl O k)

A Closer Look

V=

LS

L <kb&M«'MJ} >,

wisyhs pna

itsSession_2,
AA

itsFrontEnd_1

° sfe MV\E%z * i

KSession

= id:char*

s_item

FrontEnd BackEnd
be 0,1
i d
0,1 be_fe [Ediscount(arg:itent) float
itsFrontEnd_2
A

tem

= name:char*

« | = pricefloat

S call_Payment():void
&xlpayment(arg:itent) float

_/#lem

H in_stockint
H reserved:int

-9 -2016-11-29 - Selements -

19/38

19/38

A Closer Look

FrontEnd

Session

o = id:String

/\FGS’%/\

k|01

BackEnd

MM\Q

ltem

r|0.*

H name:String
0.*] Hpricesfloat
m = in_stock:int

= reserved:int

T ol e
] Iy

-9 -2016-11-29 - Selements -

A Closer Look

-9 -2016-11-29 - Selements -

o
FrontEnd
BackEnd
1
be
ss | * itemsBE_ | 1..*
Session ftem

i id:char* {readOnly}

*,

itemsSS

= name:char* freadOnly}
= price:float freadOnly}
= in_stock:int {readOnly}

= resened:ift {readOnly}

L@t”-(; as

19/38

19/38

A Closer Look

-9 -2016-11-29 - Selements -

A Closer Look

FrontEnd BackEnd
b
0,1
ﬁ‘ 7
%
Aéﬁi b —
s |« . y
SESSIon ltem
d N
= name:String
* = price:Float
= in_stock:Int
= resened:Int
FrontEnd
itsBackEl 1
BackEnd Item
*\] Ename:OMString
itsltems = price:double
= in_stockiint
= reserved:int
itsSession -
Session itsBackEf 0,1
= id:OMString

itsltem!|*

-9 -2016-11-29 - Selements -

19/38

19/38

Some Web-Shop Class Diagrams

-9 -2016-11-29 - Selements -

So: what makes a class diagram a good class diagram?

-9 -2016-11-29 - Selements -

2038

21/38

Main and General Modelling Guideline

-9 -2016-11-29 - Selements -

Be good to your audience.

“Imagine you're given your diagram D and asked to conduct task 7.

e Canyoudo 7 with D?
(semantics sufficiently clear? all necessary information available? ...)
N~ —

e Does doing 7 with D cost you more nerves/time/money/...than it should?”

(syntactical well-formedness? readability? intention of deviations from standard syntax
clear? reasonable selection of information? layout? ...)

In other words:

o the things most relevant for task 7, do they stand out in D?
o the things less relevant for task 7, do they disturb in D?

22/38

Main and General Quality Criterion

-9 -2016-11-29 - Selements -

e Q: When is a (class) diagram a good diagram?
o A:If it serves its purpose/makes its point.

Examples for purposes and points and rules-of-thumb:

o Analysis/Design
o realizable, no contradictions
o abstract, focused, admitting degrees of freedom for (more detailed) design
o platform independent - as far as possible but not (artificially) farer

¢ Implementation/A
o close to target platform
(Co,1 is easy for Java, C'x comes at a cost — other way round for RDB)
¢ Implementation/B

e complete, executable

o Documentation

o Right level of abstraction: “if youve only one diagram to spend, illustrate the concepts, the
architecture, the difficult part”
o The more detailed the documentation, the higher the probability for regression

“outdated/wrong documentation is worse than none”
23/38

General Diagramming Guidelines Ambler (2005)

-9 -2016-11-29 - Selements -

Note: “Exceptions prove the rule!’ e]
() o 7 wo m

e 2.1 Readability j & [_@7

e 1.-3. Support Readability of Lines

NO:
4. Apply Consistently Sized Symbolse——_ m
9. Minimize the Number of Bubbles'/ 7%:1483

&

S
[

10. Include White-Space in Diagrams

D e
13. Provide a Notational Legend d [C3—T)
- - @ﬁg

General Diagramming Guidelines Ambler (2005)

-9 -2016-11-29 - Selements -

o 2.2 Simplicity &g’ﬁ"f [C] o
—r > aav.
¢ 14. Show Only What You Have to Show Ory wuckphud
e 15. Prefer Well-Known Notation over Exotic Notation EX achle
. L an Lskeeolga.y)
e 16. Large vs. Small Diagrams ‘{%‘Zd‘m C
¢ 18. Content First, Appearance Second mv:% e oesshe

24/38

25/38

General Diagramming Guidelines Ambler (2005)

-9 -2016-11-29 - Selements -

e 2.2 Simplicity

14. Show Only What You Have to Show

e 15. Prefer Well-Known Notation over Exotic Notation

16. Large vs. Small Diagrams

18. Content First, Appearance Second

e 2.3 Naming

e 20. Set and (23. Consistently) Follow Effective Naming Conventions

o 2.4 General

e 24. Indicate Unknowns with Question-Marks
e 25. Consider Applying Color to Your Diagram
e 26. Apply Color Sparingly

Class Diagram Guidelines Ambler (2005)

-9 -2016-11-29 - Selements -

e 5.1 General Guidelines

o 88. Indicate Visibility Only on Design Models (in contrast to analysis models)

e 5.2 Class Style Guidelines

e 96. Prefer Complete Singular Nouns for Class Names
e 97. Name Operations with Strong Verbs

¢ 99. Do Not Model Scaffolding Code [Except for Exceptions]
e e,
eg 3,?,%/5&6 medliodls

25/38

26/38

Class Diagram Guidelines Ambler (2005) No;f o)
&bt

e 5.2 Class Style Guidelines

s D
=
e 103. Never Show Classes with Just Two Compartments
(27 |57

e 104. Label Uncommon Class Compartments

e 105. Include an Ellipsis (...) at the End of an Incomplete List

e 107. List Operations/Attributes in Order of Decreasing Visibility

Chan + 0 ~)

S

&evnTs)

&, F

Class Diagram Guidelines Ambler (2005)

mo: (2 e -

o 5.3 Relationships J gb i i—L,

¢ 112. Model Relationships Horizontally %

-9 -2016-11-29 - Selements -

115. Model a Dependency When the Relationship is Transitory

117. Always Indicate the Multiplicity%/ﬁ)

(o luwe
118. Avoid Multiplicity “x” =

119. Replace Relationship Lines with Attribute Types
Ho bave deers lins)

27/38

28/38

Class Diagram Guidelines Ambler (2005)

-9 -2016-11-29 - Selements -

e 5.4 Associations WO : @:;?@

¢ 127. Indicate Role Names When Multiple Associations Between Two Classes Exist

e 129. Make Associations Bidirectional Only When Collaboration Occurs in Both

Directions o doperds ofte. [T
« 131. Avoid Indicating Non-Navigability (u’; Mg €& B be (X1

¢ 133. Question Multiplicities Involving Minimums and Maximums
AN~ e(J— 3 /(0

o 5.6 Aggregation and Composition

e — exercises <:

29/38

Tell Them What You’ve Told Them. . .

9 -2016-11-29 - Sttwytt

e Associtions:
o view multiplicities as shorthand for constraints,

e OCL constraints can be added to a class diagram
in notes or at dedicated places.

e The semantics of a class diagram is its (extended) signa-
ture, and a set of (explicit and implicit) OCL constraints.

o Class Diagrams can be “drawn” well or not so well.

o Adiagram is a good diagram if it serves its purpose.

e Purposes (for class diagrams):

e Documentation of the top-level architecture.
e Documentation of the structural design decisions.
e Details can go into comments in the code.

e Ambler (2005): The Elements of UML 2.0 Style.

36/38

-9 -2016-11-29 - main -

References

37/38

References

Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge University Press.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.

-9 -2016-11-29 - main -

38/38

