How To Use Automata for Solving Mathematical

Problems

Johannes Kalmbach

University of Freiburg

johannes.kalmbach@gmail.com

January 26, 2018

Johannes Kalmbach (University of Freiburg)

Automata & Number Theory

January 26, 2018

1/

25

Introduction

o Talk about MATHEMATICS
@ How to use automata to prove mathematical theorems

@ Especially relevant if “pure” mathematical methods were not sufficient

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 2/25

Binary squares

@ With natural numbers, generally denotes multiplication, so

n? :=n- n gives us
5% =25
o With formal languages, “" generally denotes concatenation, so
w? = w - w gives us

1011% =1011 1011

Definition

Set of binary squares B:= all possible results of such square computations
(only canonical binary representations)

B:={ww|w € {1} -{0,1}*} U {e}

@ Note: 0 is a binary square (canonical binary representation is the
empty string € with €2 = ¢)

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 3/25

Lagrange's Theorem for Binary Squares
Every natural number n > 686 is the sum of four binary squares. \

@ There are 56 numbers < 686 for which this does not hold, e.g. 2 and
686

@ Original version: Every natural number is them sum of four
“ordinary” squares (Joseph-Louis Lagrange, 1736-1813)
o Example:

6=3+3+0+0=11+1l+e2+ e

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 4 /25

The Main Lemma

The following lemma will help us prove Lagrange's Theorem for Binary
Squares:

Lemma (part 1)

Every length-n integer, n odd, n > 13, is the sum of binary squares as
follows: either

@ one of length n — 1 and one of length n— 3, or
two of length n — 1 and one of length n — 3, or
one of length n — 1 and two of length n — 3, or
one each of lengths n—1,n—3 and n—5

two of length n — 1 and two of length n — 3, or

two of length n — 1, one of length n — 3 and one of length n — 5

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 5/25

The Main Lemma

Lemma (part 2)

Every length-n integer, n even, n > 18 is the sum of binary squares as
follows: either:

@ two of length n — 2 and two of length n — 4, or
@ three of length n — 2 and one of length n — 4, or
@ one each of lenghts n,n—4 and n — 6, or

@ two of lengths n — 2, one of length n — 4, and one of length n — 6.

v

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 6 /25

Main Lemma

Theorem (repetition)

Every natural number n > 686 is the sum of four binary squares.

e a € N,a> 2 has binary representation of length > 18, existence of
binary square summands follows from lemma

e For 686 < a < 2! find summands by brute-force computation

e “Missing” summands can be set to 0 (which is binary square as seen
above)

@ Proving the main lemma also proves the theorem.

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 7/25

Solving Mathematical Problems Using Automata

Given: odd-length part of main lemma, three different formulations:

Main Lemma (repetition of part 1)
o Every length-n integer, n odd, n > 13, is the sum of binary squares as
follows: [several cases ...]

@ Predicate Logic: Vx € N: E(x) V S(x) V'V Mi(x)
@ Sets: N=EUSUUM,;

where
o E(x) is true < x € E < x has even (non-odd) length in binary
representation
e S(x)is true & x € S & x is too short to be handled by the lemma
(shorter than 13)
e M;(x) is true & x € M; < the i-th case of main lemma applies to x.

January 26, 2018 8/25

Johannes Kalmbach (University of Freiburg) Automata & Number Theory

Solving Mathematical Problems Using Automata

Main Lemma (part 1, expressed as sets)

N=EuSulJm; (1)

Approach:
© find a representation of N as Kleene closure ¥* of alphabet ¥, so a
bijective mapping r : N — X* (e.g. canonical binary representation
and X = {0,1})
@ for each of the sets mentioned in (1) construct an automaton that
accepts exactly this set, e.g.

Le = {r(x) € N : x has even length}
@ show that (1) holds, so that

LN:LEULSUULM,

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 9/25

Solving Mathematical Problems Using Automata

Ly = LEULSUULI\/I;
Prerequisites

@ We must find an automata model which is powerful enough to
express all of the sets mentioned above.

@ In our chosen model, the equation above must be decidable.

@ True for nondeterministic finite automata (NFAs): closed under
union and equality is decidable.

@ Nondeterministic = able to “guess” summands.

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018

10 / 25

Automata for the main lemma

main lemma (part 1)

Iy=LeULsU| Ly,

@ Automata for Ly, Lg (even lenght) and Lg (shorter than 13) can be
constructed easily.

@ In the following, construct automaton Ly, for first case of main
lemma:

A binary number x of odd length n > 13 is in Ly, iff x is the sum of two
binary squares of length n — 1 and n — 3

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 11 /25

Automaton for Ly,

A binary number x of odd length n > 13 is in Ly, iff x is the sum of two
binary squares of length n—1 and n— 3

@ ldea: NFA gets x as an input and guesses the summands in a
nondeterministic way.
@ Make sure that only valid summands can be guessed (binary squares
and length constraints)
@ Accept x iff valid summands a, b could be guessed.
bok—3 bok—4 ... bry1 b br_1| bx—o b3 ... by bg
aok—1 A2k—2 A2k—3 A2%k—4 - Akl k| A1 A2 Ak-3 ... a1 Ao
Xok Xok—1 Xok—2 Xok—3 X2k—4 -+ Xki1 Xk| Xk—1 Xk—2 Xk—3 --. X1 X0

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 12 /25

Folded Representation of Binary Numbers

Problem: Binary squares B do not form regular language (Pumping
lemma, NFAs cannot “remember” words of arbitrary length)

Idea: Add high and low half of bits simultaneously
Addition of higher bits depends on carry of lower bits
Similar idea: Conditional Sum Adder from “TI"

For this we use a more sophisticated, “folded” representation of
binary numbers

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 13 /25

Folded Representation of Binary Numbers

Our automaton gets pairs of bits, one of the higher and lower half each:
= {[n 1| bl e{0,1}}

The “folding” mechanism can be seen in the following figure (the ay are
bits of an 9-bit integer, leading bit must be 1):

1
ar a3
137363534 aszazaiagp — | ag a2 | — [84, ao][a5, 31][367 82][37, 33][1]C
ds a1
d4q 4o
1
11
11100 1001 — | 1 0 | — [0,1][0,0][1,0][1, 1][1]¢
00
01

Reversed order more logical when adding up numbers.

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 14 / 25

Folded Representation of Binary Numbers

@ highest bit of odd-length number has no “folding partner” = special
character called [1]¢
@ Automata will need to know if we are near the end of the addition.

e Pairs are annoated with letters «, 3,7, 4, €
e ¢ means “last pair in even-length number or second-to-last in

odd-length number”, other subscripts definied similarly

@ This extends our language to

£ = {[1lc} U({Ih N | bl € {0,1}} x {a, B.7..¢})

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 15 / 25

Adding with NFAs

A binary number x of odd length n =2k + 1 > 13 is in Ly, iff x is the
sum of two binary squares of length n — 1 and n — 3

@ Basic setup for adding two numbers of length n — 1 = 2k and
n—3=2k—-2
@ “|" marks the middle of the numbers (rounded down in the odd
length case)
bok—3 bok—s ... buy1 bi br—1| b bx—3 ... b1 by
k-1 32k—2 k-3 k-4 - k41 k| A1 A2 A3 ... 31 A
Xk X2k—1 X2k—2 X2k—3 X2k—4 - .- Xk+1 Xk| Xk—1 Xk—2 Xk—3 ... X1 Xp

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 16 / 25

Adding with NFAs

@ Summands are binary squares — digits repeat
e First digit of each number must be 1 (definition of length)

@ add carry at starting places

1 bk,3 P b2 b1 bo’ 1 bk,3 . b1 bo
1 di—2 dk—3 adk—4 ... al ao| 1 dg—2 adk—-3... di1 4o
Cok C2k—1 Cok—2 k-3 Cok—4--- Cky1l Ck Ck-1 Ck—2 Ck—3... ¢ O

L¢ Xok—1, Xok—25 X2k—3, X2k—4g - - - Xkt1y Xko| Xk—1, Xk—25 Xk—3, « -+ X1, X0q

upper half lower half

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 17 / 25

Adding with NFAs: Creating the Transition Relation

1 bxz... by b by 1 be_z... b1 by
1 di—2 dk—3 dk—4 ... ail ao‘ 1 dg—2 dk—-3... di1 4o
Cok Cok—1 Cok—2 C2k—3 C2k—4--- Ckt1 Ck Ck-1 Ck—2 Ck—3... ¢ O

L¢ Xok—1, Xok—25 X2k—3, X2k—dj - - - Xk1o Xko| Xk—1, Xk—25 Xk—3, - -+ X1, X0q

upper half lower half
@ Start in initial state g
@ Read [xk, x0]o as input, “guess’ by, b1, ap
@ properties that have to be stored in state:
by to be used later
b; to be used in next step
Carries ¢/, cp (c1, cr1) for next step
Upper half carry cx must be known for the first transition, is property
of automaton (two separate automata for the two choices of ¢)

@ next step has form (by, b1, ¢/, cp) with bo, b1, ¢/, cp € {0,1} (1 is
highest possible carry when adding two binary numbers)

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 18 / 25

Adding with NFAs

1 bi_s... by by by| 1 bes... b by

1 ax_o ax—3 ak—g... ar aol 1 ax_p ak_3... a1 ao

Cok C2k—1 Cok—2 Cok—3 C2k—4--- Ckyl Ck Ck—1 Ck—2 Ck3... ¢ O
L¢ Xok—1, Xok—25 X2k—3, X2k—45 - - - Xkt1q Xko | Xk—1, Xk—25 Xk—3, - -+ X1, X0,

~

upper half lower half

e Transition from qo to state (by, b1, ¢/, ¢p) on the character [xk, xo]q is
allowed (nondeterministic) iff for any ap € {0, 1} all of the following

conditions hold:
e by + ag = ¢ xo (seen as bit sequence)
o bi+ap+ck = chxk

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018

19 / 25

Adding with NFAs

Example Start in initial state qp, assume automaton with ¢, = 0. First
input character is [0, 1],.

1 bk,3 . b2 b1 b0| 1 bk,3 S b1 bo
1 di—2 dk—3 adk—4 ... al ao‘ 1 dg—2 adk—-3... di 4o
Cok Cok—1 Cok—2 Cok—3 Cok—4--- Cky1 0 Cko1 Ch2 C3... c1 0

¢ Xok—1, Xok—25 X2k—3, X2k—4g - - - Xk+1, Oal Xk—1, Xk—25 Xk—3, - -+ X1, la

upper half ’ lower half
(S(QO, [07 1]Oé) = {
bo b1 a0 C/ Ch

@ Similarly for
[0,0]a,[1,0]a, [1,1]a

@ Other subscripts do not occur in
go if numbers are long enough
and correctly folded

0
0
1
1

= OoO|l=|O

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 20 / 25

Adding with NFAs

Example Start in initial state qg, assume automaton with ¢, = 0. First
input character is [0, 1],.

1 be_3... by by bo| 1 bx_3... b1 by
1 ax2 ak-3 ak4... a1 ao 1 ako2 a-3... a1 a
Cok k-1 k-2 k-3 Ck—4... Ckil 0 c1 <2 ck3... a0

L Xok—1, X2k—25 X2k—3, X2k—45 - - - Xk+1, Oal Xk—1, Xk—2; Xk—3, .. x1, Lo

upper half lower half
5(q07 [07 1]a) = {(0’ 1’ 07 1)7

1,0,0,0
bo b1 ao C/ Ch ()}

o || X
o | O | X

X

1 @ Similarly for

0 [070]047[170]047[171104

@ Other subscripts do not occur in
go if numbers are long enough
and correctly folded

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 21 /25

== O| O
= | Ol O

X X X

Adding with NFAs

1 by_z... by b b 1 bez... by by
1 dk—2 adk—3 dk—4 ... di ao‘ 1 dk—2 dk—3... di1 ao
Cok k-1 k-2 k-3 Ck—4... Ckil 0 ck1 co2 cks3... a O

L¢ Xok—1, X2k—25 X2k—3, X2k—45 - - - Xk+1q Xko| Xk—1, Xk—25 Xk—3, - -+ X1, X0,

upper half lower Ralf
@ Rules for other states and inputs can be derived in a similar way, e.g.

@ When reading [u, v]c we have to use the by from the state tuple for
the lower bits and in the upper half of the bits there is no b.

@ We can only choose 1 for a.

@ We have to make sure that we get ¢k as a carry for the lower bits.

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 22 /25

Putting together the automata

@ Similar techniques are used to construct automata for remaining cases
of main lemma (also for even-length numbers)

@ The actual verification is done by the ULTIMATE framework
developed at the chair for software engineering (University of
Freiburg)

@ Actual verification took less than one minute

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 23 /25

Discussion of method

@ Automata theory can deliver proofs where pure mathematicians did
not suceed so far

@ especially good for computational proofs (e.g. case distinctions with
many cases like in our example)
@ Critics: Computer does actual proving.

e Hard to see and verify if working correctly
e Hard to get intuition why proof works

@ “Mechanical” proof better than no proof?

@ Sometimes “elegant” proof is found some time after computational
proof

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 24 / 25

Bibliography

3] P. Madhusudan, D. Nowotka, A. Rajasekaran, J. Shallit
Lagrange's Theorem for Binary Squares
ArXiv e-prints https://arxiv.org/abs/1710.04247

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 25 /25

https://arxiv.org/abs/1710.04247

