
How To Use Automata for Solving Mathematical
Problems

Johannes Kalmbach

University of Freiburg

johannes.kalmbach@gmail.com

January 26, 2018

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 1 / 25



Introduction

Talk about MATHEMATICS

How to use automata to prove mathematical theorems

Especially relevant if “pure” mathematical methods were not sufficient

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 2 / 25



Binary squares

With natural numbers, “·” generally denotes multiplication, so
n2 := n · n gives us

52 =25

With formal languages, “·” generally denotes concatenation, so
w2 := w · w gives us

10112 =1011 1011

Definition

Set of binary squares B:= all possible results of such square computations
(only canonical binary representations)

B := {ww |w ∈ {1} · {0, 1}∗} ∪ {ε}

Note: 0 is a binary square (canonical binary representation is the
empty string ε with ε2 = ε)

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 3 / 25



Lagrange’s Theorem for Binary Squares

Theorem

Every natural number n > 686 is the sum of four binary squares.

There are 56 numbers ≤ 686 for which this does not hold, e.g. 2 and
686

Original version: Every natural number is them sum of four
“ordinary” squares (Joseph-Louis Lagrange, 1736-1813)

Example:
6 = 3 + 3 + 0 + 0 = 112 + 112 + ε2 + ε2

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 4 / 25



The Main Lemma

The following lemma will help us prove Lagrange’s Theorem for Binary
Squares:

Lemma (part 1)

Every length-n integer, n odd, n ≥ 13, is the sum of binary squares as
follows: either

one of length n − 1 and one of length n − 3, or

two of length n − 1 and one of length n − 3, or

one of length n − 1 and two of length n − 3, or

one each of lengths n − 1, n − 3 and n − 5

two of length n − 1 and two of length n − 3, or

two of length n − 1, one of length n − 3 and one of length n − 5

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 5 / 25



The Main Lemma

Lemma (part 2)

Every length-n integer, n even, n ≥ 18 is the sum of binary squares as
follows: either:

two of length n − 2 and two of length n − 4, or

three of length n − 2 and one of length n − 4, or

one each of lenghts n, n − 4 and n − 6, or

two of lengths n − 2, one of length n − 4, and one of length n − 6.

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 6 / 25



Main Lemma

Theorem (repetition)

Every natural number n > 686 is the sum of four binary squares.

a ∈ N, a ≥ 217 has binary representation of length ≥ 18, existence of
binary square summands follows from lemma

For 686 < a < 217 find summands by brute-force computation

“Missing” summands can be set to 0 (which is binary square as seen
above)

Proving the main lemma also proves the theorem.

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 7 / 25



Solving Mathematical Problems Using Automata

Given: odd-length part of main lemma, three different formulations:

Main Lemma (repetition of part 1)

Every length-n integer, n odd, n ≥ 13, is the sum of binary squares as
follows: [several cases . . . ]

Predicate Logic: ∀x ∈ N : E (x) ∨ S(x) ∨
∨
Mi (x)

Sets: N = E ∪ S ∪
⋃

Mi

where

E (x) is true ⇔ x ∈ E ⇔ x has even (non-odd) length in binary
representation

S(x) is true ⇔ x ∈ S ⇔ x is too short to be handled by the lemma
(shorter than 13)

Mi (x) is true ⇔ x ∈ Mi ⇔ the i-th case of main lemma applies to x .

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 8 / 25



Solving Mathematical Problems Using Automata

Main Lemma (part 1, expressed as sets)

N = E ∪ S ∪
⋃

Mi (1)

Approach:
1 find a representation of N as Kleene closure Σ∗ of alphabet Σ, so a

bijective mapping r : N→ Σ∗ (e.g. canonical binary representation
and Σ = {0, 1})

2 for each of the sets mentioned in (1) construct an automaton that
accepts exactly this set, e.g.

LE = {r(x) ∈ N : x has even length}

3 show that (1) holds, so that

LN = LE ∪ LS ∪
⋃

LMi

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 9 / 25



Solving Mathematical Problems Using Automata

LN = LE ∪ LS ∪
⋃

LMi

Prerequisites

We must find an automata model which is powerful enough to
express all of the sets mentioned above.

In our chosen model, the equation above must be decidable.

True for nondeterministic finite automata (NFAs): closed under
union and equality is decidable.

Nondeterministic ⇒ able to “guess” summands.

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 10 / 25



Automata for the main lemma

main lemma (part 1)

LN = LE ∪ LS ∪
⋃

LMi

Automata for LN, LE (even lenght) and LS (shorter than 13) can be
constructed easily.

In the following, construct automaton LM1 for first case of main
lemma:

LM1

A binary number x of odd length n ≥ 13 is in LM1 iff x is the sum of two
binary squares of length n − 1 and n − 3

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 11 / 25



Automaton for LM1

LM1

A binary number x of odd length n ≥ 13 is in LM1 iff x is the sum of two
binary squares of length n − 1 and n − 3

Idea: NFA gets x as an input and guesses the summands in a
nondeterministic way.

Make sure that only valid summands can be guessed (binary squares
and length constraints)

Accept x iff valid summands a, b could be guessed.

b2k−3 b2k−4 . . . bk+1 bk bk−1| bk−2 bk−3 . . . b1 b0
a2k−1 a2k−2 a2k−3 a2k−4 . . . ak+1 ak | ak−1 ak−2 ak−3 . . . a1 a0

x2k x2k−1 x2k−2 x2k−3 x2k−4 . . . xk+1 xk | xk−1 xk−2 xk−3 . . . x1 x0

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 12 / 25



Folded Representation of Binary Numbers

Problem: Binary squares B do not form regular language (Pumping
lemma, NFAs cannot “remember” words of arbitrary length)

Idea: Add high and low half of bits simultaneously

Addition of higher bits depends on carry of lower bits

Similar idea: Conditional Sum Adder from “TI”

For this we use a more sophisticated, “folded” representation of
binary numbers

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 13 / 25



Folded Representation of Binary Numbers

Our automaton gets pairs of bits, one of the higher and lower half each:

Σ = {[h, l ] | h, l ∈ {0, 1}}
The “folding” mechanism can be seen in the following figure (the ak are
bits of an 9-bit integer, leading bit must be 1):

1a7a6a5a4|a3a2a1a0 →


1
a7 a3
a6 a2
a5 a1
a4 a0

→ [a4, a0][a5, a1][a6, a2][a7, a3][1]ζ

1 1100 1001→


1
1 1
1 0
0 0
0 1

→ [0, 1][0, 0][1, 0][1, 1][1]ζ

Reversed order more logical when adding up numbers.
Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 14 / 25



Folded Representation of Binary Numbers

highest bit of odd-length number has no “folding partner” ⇒ special
character called [1]ζ
Automata will need to know if we are near the end of the addition.

Pairs are annoated with letters α, β, γ, δ, ε
ε means “last pair in even-length number or second-to-last in
odd-length number”, other subscripts definied similarly

This extends our language to

Σ = {[1]ζ} ∪ ({[h, l ] | h, l ∈ {0, 1}} × {α, β, γ, δ, ε})

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 15 / 25



Adding with NFAs

LM1

A binary number x of odd length n = 2k + 1 ≥ 13 is in LM1 iff x is the
sum of two binary squares of length n − 1 and n − 3

Basic setup for adding two numbers of length n − 1 = 2k and
n − 3 = 2k − 2

“|” marks the middle of the numbers (rounded down in the odd
length case)

b2k−3 b2k−4 . . . bk+1 bk bk−1| bk−2 bk−3 . . . b1 b0
a2k−1 a2k−2 a2k−3 a2k−4 . . . ak+1 ak | ak−1 ak−2 ak−3 . . . a1 a0

x2k x2k−1 x2k−2 x2k−3 x2k−4 . . . xk+1 xk | xk−1 xk−2 xk−3 . . . x1 x0

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 16 / 25



Adding with NFAs

Summands are binary squares → digits repeat

First digit of each number must be 1 (definition of length)

add carry at starting places

1 bk−3 . . . b2 b1 b0| 1 bk−3 . . . b1 b0
1 ak−2 ak−3 ak−4 . . . a1 a0| 1 ak−2 ak−3 . . . a1 a0

c2k c2k−1 c2k−2 c2k−3 c2k−4 . . . ck+1 ck ck−1 ck−2 ck−3 . . . c1 0

1ζ x2k−1ε x2k−2δ x2k−3γ x2k−4β . . . xk+1α xkα | xk−1ε xk−2δ xk−3γ . . . x1α x0α︸ ︷︷ ︸ ︸ ︷︷ ︸
upper half lower half

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 17 / 25



Adding with NFAs: Creating the Transition Relation

1 bk−3 . . . b2 b1 b0| 1 bk−3 . . . b1 b0
1 ak−2 ak−3 ak−4 . . . a1 a0| 1 ak−2 ak−3 . . . a1 a0

c2k c2k−1 c2k−2 c2k−3 c2k−4 . . . ck+1 ck ck−1 ck−2 ck−3 . . . c1 0
1ζ x2k−1ε x2k−2δ x2k−3γ x2k−4β . . . xk+1α xkα | xk−1ε xk−2δ xk−3γ . . . x1α x0α︸ ︷︷ ︸ ︸ ︷︷ ︸

upper half lower half

Start in initial state q0

Read [xk , x0]α as input, “guess” b0, b1, a0
properties that have to be stored in state:

b0 to be used later
b1 to be used in next step
Carries cl , ch (c1, ck+1) for next step
Upper half carry ck must be known for the first transition, is property
of automaton (two separate automata for the two choices of ck)

next step has form (b0, b1, cl , ch) with b0, b1, cl , ch ∈ {0, 1} (1 is
highest possible carry when adding two binary numbers)

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 18 / 25



Adding with NFAs

1 bk−3 . . . b2 b1 b0| 1 bk−3 . . . b1 b0
1 ak−2 ak−3 ak−4 . . . a1 a0| 1 ak−2 ak−3 . . . a1 a0

c2k c2k−1 c2k−2 c2k−3 c2k−4 . . . ck+1 ck ck−1 ck−2 ck−3 . . . c1 0

1ζ x2k−1ε x2k−2δ x2k−3γ x2k−4β . . . xk+1α xkα | xk−1ε xk−2δ xk−3γ . . . x1α x0α︸ ︷︷ ︸ ︸ ︷︷ ︸
upper half lower half

Transition from q0 to state (b0, b1, cl , ch) on the character [xk , x0]α is
allowed (nondeterministic) iff for any a0 ∈ {0, 1} all of the following
conditions hold:

b0 + a0 = cl x0 (seen as bit sequence)
b1 + a0 + ck = ch xk

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 19 / 25



Adding with NFAs

Example Start in initial state q0, assume automaton with ck = 0. First
input character is [0, 1]α.

1 bk−3 . . . b2 b1 b0| 1 bk−3 . . . b1 b0
1 ak−2 ak−3 ak−4 . . . a1 a0| 1 ak−2 ak−3 . . . a1 a0

c2k c2k−1 c2k−2 c2k−3 c2k−4 . . . ck+1 0 ck−1 ck−2 ck−3 . . . c1 0

1ζ x2k−1ε x2k−2δ x2k−3γ x2k−4β . . . xk+1α 0α| xk−1ε xk−2δ xk−3γ . . . x1α 1α︸ ︷︷ ︸ ︸ ︷︷ ︸
upper half lower half

b0 b1 a0 cl ch

0 0

0 1

1 0

1 1

δ(q0, [0, 1]α) = {

Similarly for
[0, 0]α, [1, 0]α, [1, 1]α

Other subscripts do not occur in
q0 if numbers are long enough
and correctly folded

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 20 / 25



Adding with NFAs

Example Start in initial state q0, assume automaton with ck = 0. First
input character is [0, 1]α.

1 bk−3 . . . b2 b1 b0| 1 bk−3 . . . b1 b0
1 ak−2 ak−3 ak−4 . . . a1 a0| 1 ak−2 ak−3 . . . a1 a0

c2k c2k−1 c2k−2 c2k−3 c2k−4 . . . ck+1 0 ck−1 ck−2 ck−3 . . . c1 0

1ζ x2k−1ε x2k−2δ x2k−3γ x2k−4β . . . xk+1α 0α| xk−1ε xk−2δ xk−3γ . . . x1α 1α︸ ︷︷ ︸ ︸ ︷︷ ︸
upper half lower half

b0 b1 a0 cl ch

0 0 x x x

0 1 1 0 1

1 0 0 0 0

1 1 x x x

δ(q0, [0, 1]α) = {(0, 1, 0, 1),
. . . (1, 0, 0, 0)}

Similarly for
[0, 0]α, [1, 0]α, [1, 1]α

Other subscripts do not occur in
q0 if numbers are long enough
and correctly folded

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 21 / 25



Adding with NFAs

1 bk−3 . . . b2 b1 b0| 1 bk−3 . . . b1 b0
1 ak−2 ak−3 ak−4 . . . a1 a0| 1 ak−2 ak−3 . . . a1 a0

c2k c2k−1 c2k−2 c2k−3 c2k−4 . . . ck+1 0 ck−1 ck−2 ck−3 . . . c1 0

1ζ x2k−1ε x2k−2δ x2k−3γ x2k−4β . . . xk+1α xkα | xk−1ε xk−2δ xk−3γ . . . x1α x0α︸ ︷︷ ︸ ︸ ︷︷ ︸
upper half lower half

Rules for other states and inputs can be derived in a similar way, e.g.

When reading [u, v ]ε we have to use the b0 from the state tuple for
the lower bits and in the upper half of the bits there is no b.

We can only choose 1 for a.

We have to make sure that we get ck as a carry for the lower bits.

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 22 / 25



Putting together the automata

Similar techniques are used to construct automata for remaining cases
of main lemma (also for even-length numbers)

The actual verification is done by the ULTIMATE framework
developed at the chair for software engineering (University of
Freiburg)

Actual verification took less than one minute

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 23 / 25



Discussion of method

Automata theory can deliver proofs where pure mathematicians did
not suceed so far

especially good for computational proofs (e.g. case distinctions with
many cases like in our example)

Critics: Computer does actual proving.

Hard to see and verify if working correctly
Hard to get intuition why proof works

“Mechanical” proof better than no proof?

Sometimes “elegant” proof is found some time after computational
proof

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 24 / 25



Bibliography

P. Madhusudan, D. Nowotka, A. Rajasekaran, J. Shallit
Lagrange’s Theorem for Binary Squares
ArXiv e-prints https://arxiv.org/abs/1710.04247

Johannes Kalmbach (University of Freiburg) Automata & Number Theory January 26, 2018 25 / 25

https://arxiv.org/abs/1710.04247

