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Introduction to System Verification
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System Verification Questions

Given a system (e.g. software system). Most prominent question:

Does the system never reach a deadlock? (deadlock checking)

Traditional approach: Create Transition System and do a state space search
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Transition System of Software with concurrent processes

Example
Given n processes all doing the same following task:

bool x = false;
while true do

x = true; # ti
wait(random)
x = false; # t̄i
wait(random

end while

Each state represented by the set of processes where x = true
In this example |P({p1, . . . , pn})| = 2n states.
Searching for deadlock: Find state with no outgoing transitions which is no
terminal state.
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Alternative approach: Petri nets to model concurrency

Example
Given n processes all doing the same following task:

bool x = false;
while true do

x = true; # ti
wait(random)
x = false; # t̄i
wait(random)

end while

sP1false

sP1true

t1t̄1 . . .

sPnfalse

sPntrue

t̄n tn

Figure: Petri net

Size is linear in n
How to check for deadlocks?
Cycles in Petri Nets are problematic
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Example

sP1Wait sP1Crit
sMutex sP2Crit sP2Wait

tP1Enter

tP1Leave

tP2Enter

tP2Leave

Figure: Petri net
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Definition: Unfolding

An Unfolding of a Petri Net is a Branching Process where
1 All reachable markings are present
2 All transitions enabled by a marking are present

A Branching Process is an Occurence Net with a labelling function
An Occurence Net is a net with a simpler structure
The labelling functions assigns each node in the occurence net a label of the
original net
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Definition of Occurence Nets (1)

Intuitively: Occurence Nets can be seen as 1-safe Nets.

Initially one token at each Condition of Min(O) = {b ∈ B|0 = |•b|}

Definition

An Occurence Net is a net O = (B,E ,F ) with the following properties:
1 |•b| ≤ 1 for all b ∈ B
2 O is acyclic
3 Every x ∈ B ∪ E has finitely many predecessors
4 No event e ∈ E is in conflict with itself (no backward conflicts)
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Definition of Occurence Nets (2)

Definition

An Occurence Net is a net O = (B,E ,F ) with the following properties:
1 |•b| ≤ 1 for all b ∈ B
2 O is acyclic
3 Every x ∈ B ∪ E has finitely many predecessors
4 No event e ∈ E is in conflict with itself (no backward conflicts)

Example (Property 2)

b1

b2

e1e2

Figure: Counterexample
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Definition of Occurence Nets (3)

Definition

An Occurence Net is a net O = (B,E ,F ) with the following properties:
1 |•b| ≤ 1 for all b ∈ B
2 O is acyclic
3 Every x ∈ B ∪ E has finitely many predecessors
4 No event e ∈ E is in conflict with itself (no backward conflicts)

9 von 22 Dominik Drexler Verification using net unfoldings



Definition of Occurence Nets (4)

Definition

An Occurence Net is a net O = (B,E ,F ) with the following properties:
1 |•b| ≤ 1 for all b ∈ B
2 O is acyclic
3 Every x ∈ B ∪ E has finitely many predecessors
4 No event e ∈ E is in conflict with itself (no backward conflicts)

Definition
x is in conflict with y denoted by x#y iff there exists two paths p1 = b, e1, . . . , x and
p2 = b, e2, . . . , y for b ∈ B and e1 6= e2 ∈ E .

Example (Property 4)

Either e1 or e2 can fire
⇒ Either b2 or b3 receives a token
⇒ e3 cannot be fired at any time
⇒ makes no sense to allow such
thing

b1

b2 b3

e2e1

e3

Figure: Counterexample
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Configurations

Configurations describe the possible events that can be fired in an Occurence Net

11 von 22 Dominik Drexler Verification using net unfoldings



Configurations

Configurations describe the possible events that can be fired in an Occurence Net

Definition
A set of events is a configuration C iff the following properties are satisfied:

1 e ∈ C ⇒ ∀e′ < e : e′ ∈ C
2 ∀e, e′ ∈ C : ¬(e#e′)

11 von 22 Dominik Drexler Verification using net unfoldings



Configurations

Configurations describe the possible events that can be fired in an Occurence Net

Definition
A set of events is a configuration C iff the following properties are satisfied:

1 e ∈ C ⇒ ∀e′ < e : e′ ∈ C
2 ∀e, e′ ∈ C : ¬(e#e′)

Example

C0 = ∅

C1 = {e2, e3}
{e4} is not a configuration!
{e1, e2} is not a configuration!

b1

b3 b4 b5

b6 b7 b8

b2

e2e1

e3 e4

11 von 22 Dominik Drexler Verification using net unfoldings



Configurations

Configurations describe the possible events that can be fired in an Occurence Net

Definition
A set of events is a configuration C iff the following properties are satisfied:

1 e ∈ C ⇒ ∀e′ < e : e′ ∈ C
2 ∀e, e′ ∈ C : ¬(e#e′)

Example

C0 = ∅
C1 = {e2, e3}

{e4} is not a configuration!
{e1, e2} is not a configuration!

b1

b3 b4 b5

b6 b7 b8

b2

e2e1

e3 e4

11 von 22 Dominik Drexler Verification using net unfoldings



Configurations

Configurations describe the possible events that can be fired in an Occurence Net

Definition
A set of events is a configuration C iff the following properties are satisfied:

1 e ∈ C ⇒ ∀e′ < e : e′ ∈ C
2 ∀e, e′ ∈ C : ¬(e#e′)

Example

C0 = ∅
C1 = {e2, e3}
{e4} is not a configuration!

{e1, e2} is not a configuration!

b1

b3 b4 b5

b6 b7 b8

b2

e2e1

e3 e4

11 von 22 Dominik Drexler Verification using net unfoldings



Configurations

Configurations describe the possible events that can be fired in an Occurence Net

Definition
A set of events is a configuration C iff the following properties are satisfied:

1 e ∈ C ⇒ ∀e′ < e : e′ ∈ C
2 ∀e, e′ ∈ C : ¬(e#e′)

Example

C0 = ∅
C1 = {e2, e3}
{e4} is not a configuration!
{e1, e2} is not a configuration!

b1

b3 b4 b5

b6 b7 b8

b2

e2e1

e3 e4

11 von 22 Dominik Drexler Verification using net unfoldings



Definition: Branching Process (1)

Definition

Let N = (P,T ,W ,M0) be a Petri net. A Branching Process is a labelled occurence
net β = (O, p) = (B,E ,F , p) where p is the labelling function with the following
properties:

1 p(B) ⊆ P and P(E) ⊆ T
2 For every e ∈ E , the restriction of p to •e is a bijection between •e (in β) and
•p(e) (in N )

3 The restriction of p to Min(O) := {b ∈ B|0 = |•b|} is a bijection between
Min(O) and M0

4 For every e1, e2 ∈ E if •e1 =• e2 and p(e1) = p(e2) then e1 = e2

Example (Property 1: Preservation of the nature of nodes)

s1

s2

t2t1

Figure: N = (P,T ,W ,M0)

p(b1) = s1 ∈ P
p(b2) = s2 ∈ P
p(b3) = s2 ∈ P
p(e1) = t1 ∈ T
p(e2) = t2 ∈ T

s1

s2 s2

b1

b2 b3

t2t1 e2e1

Figure: β = (B, E , F , p)
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Definition: Branching Process (2)

Definition

Let N = (P,T ,W ,M0) be a Petri net. A Branching Process is a labelled occurence
net β = (O, p) = (B,E ,F , p) where p is the labelling function with the following
properties:

1 p(B) ⊆ P and P(E) ⊆ T
2 For every e ∈ E , the restriction of p to •e is a bijection between •e (in β) and
•p(e) (in N )

3 The restriction of p to Min(O) := {b ∈ B|0 = |•b|} is a bijection between
Min(O) and M0

4 For every e1, e2 ∈ E if •e1 =• e2 and p(e1) = p(e2) then e1 = e2

Example (Property 2: Preservation of transition environment)

s1

s2

t2t1

Figure: N = (P,T ,W ,M0)

p(e1) = t1

p(•e1) = p({b1}) =
{s1} =• t1

p(e•1 ) = p({b2}) =
{s2} = t•1

s1

s2 s2

b1

b2 b3

t2t1 e2e1

Figure: β = (B, E , F , p)
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Definition: Branching Process (3)

Definition

Let N = (P,T ,W ,M0) be a Petri net. A Branching Process is a labelled occurence
net β = (O, p) = (B,E ,F , p) where p is the labelling function with the following
properties:

1 p(B) ⊆ P and P(E) ⊆ T
2 For every e ∈ E , the restriction of p to •e is a bijection between •e (in β) and
•p(e) (in N )

3 The restriction of p to Min(O) := {b ∈ B|0 = |•b|} is a bijection between
Min(O) and M0

4 For every e1, e2 ∈ E if •e1 =• e2 and p(e1) = p(e2) then e1 = e2

Example (Property 3: β starts at M0)

M0 = {s1, s1, s2}
β has three minimal nodes b1, b2, b3 without incoming edges.
p(b1) = s1, p(b2) = s1 and p(b3) = s2
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Definition: Branching Process (4)

Definition

Let N = (P,T ,W ,M0) be a Petri net. A Branching Process is a labelled occurence
net β = (O, p) = (B,E ,F , p) where p is the labelling function with the following
properties:

1 p(B) ⊆ P and P(E) ⊆ T
2 For every e ∈ E , the restriction of p to •e is a bijection between •e (in β) and
•p(e) (in N )

3 The restriction of p to Min(O) := {b ∈ B|0 = |•b|} is a bijection between
Min(O) and M0

4 For every e1, e2 ∈ E if •e1 =• e2 and p(e1) = p(e2) then e1 = e2

Example (Property 4: β does not duplicate transitions)

s1

s2 s2 s2

b1

b2 b3 b4

t2t1 t2e2e1 e3

Figure: Counterexample

15 von 22 Dominik Drexler Verification using net unfoldings



Markings reached by Configurations

What is the marking reached by a configuration?

Definition
A set of events is a configuration C iff the following properties are satisfied:

1 e ∈ C ⇒ ∀e′ ≤ e : e′ ∈ C
2 ∀e, e′ ∈ C : ¬(e#e′)

Mark(C) denotes the marking reached by fireing all events in C .
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p({b1, b2}) = {s1, s2}

Mark({e2, e3}) =
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s3 s3 s4

s5 s5 s6
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b3 b4 b5

b6 b7 b8
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Example: Mutual Exclusion Model

Example
Given: The Petri Net N which models mutual exclusion

sP1Wait sP1Crit
sMutex sP2Crit sP2Wait

tP1Enter

tP1Leave

tP2Enter

tP2Leave

Figure: Petri Net N

Goal: Compute Unfolding of N
Unfolding is a Branching Process where:

1 All reachable markings are present
2 All transitions enabled by a marking are present
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Example: Unfolding of Mutual Exclusion Model

Definition (Occurence Net
O = (B,E ,F ))

1 |•b| ≤ 1 for all b ∈ B
2 O is acyclic
3 Every x ∈ B ∪ E has finitely

many predecessors
4 No backward conflicts

Definition (Labelling function p)
1 p(B) ⊆ P and p(E) ⊆ T
2 Preserve environment of

transitions
3 Minimal conditions correspond to

M0
4 No duplicate transitions

Example

sP1Wait sP1Crit
sMutex sP2Crit sP2Wait

tP1Enter

tP1Leave

tP2Enter

tP2Leave

Figure: Petri Net N

sP1W sM sP2Wb1 b2 b3

Figure: Current State while unfolding
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Deadlock checking in Unfoldings

Definition (Deadlock: Petri Net vs Unfolding)

Let N be a Petri Net and β its Unfolding.
N has a deadlock if there exists a reachable marking M which is no terminal marking
and no transition is enabled.
⇔ There exists a configuration C in β for which Mark(C) = M and M is no terminal
marking of N and C is in conflict with all cutoff events.

19 von 22 Dominik Drexler Verification using net unfoldings



Configuration C = {e2, e4} with
Mark(C) = {sP1W , sP2W } is a
deadlock!
Search techniques:

Backtracking search

Exponential time complexity for
search

sP1Wait sP1Crit
sMutex sP2Crit sP2Wait

tP1Enter

tP1Leave

tP2Enter

tP2Leave

Figure: Petri Net N with deadlock

sP1W sM sP2W

sP1C sP2C

sP1W sM sP2W

sP1C

tP1E tP2E

tP1L tP2L

tP1E

b1 b2 b3

b4 b5

b6 b7 b8

b9

e1 e2

e3 e4

e5

{sP1C , sP2W } {sP1W , sP2C}

{sP1W , sM , sP2W } {sP1W , sP2W }

{sP1C , sP2W }

Figure: Unfolding of N
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Conclusion

Structure of Unfoldings was presented

Construction of Unfoldings was presented
Unfolding not necessarily smaller than the Transition System
More concurrency ⇒ Much smaller Unfolding
Size reduction up to an exponential factor possible
Search in Transition System linear running time in its size
Search in Unfolding exponential running time in its size
Overall verification speed is increased
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22 von 22 Dominik Drexler Verification using net unfoldings


	Introduction to System Verification

