
Prof. Dr. Andreas Podelski
Tanja Schindler

Hand in until December 8th, 2017
11:59 via the post boxes

Discussion: December 11th, 2017

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 7

Exercise 1: Invariant checking I
In the book, you have seen an algorithm for invariant checking by forward depth-first
search (Section 3.3.1, Algorithm 4). Below, we give a recursive version of this algorithm.

Algorithm 1: DFS-based invariant checking

input : a finite transition system TS and a propositional formula Φ
output: “yes” if TS |= “always Φ”, otherwise “no” and a counterexample
R := ∅; // set of states (‘‘Reachable’’)

U := ε; // stack of states (‘‘Unfinished’’)

forall s ∈ I do
if DFS(s,Φ) then

return(“no”, reverse(U)); // path from s to error state

end

end
return(“yes”); // TS |= ‘‘always Φ’’

function DFS(s,Φ)
push(s, U);
if s /∈ R then

R := R ∪ {s}; // mark s as reachable

if s 6|= Φ then
return(“true”); // s is an error state

else
forall s′ ∈ Post(s) do

if DFS(s′,Φ) then
return(“true”); // s′ lies on a path to an error state

end

end

end

end
pop(U);
return(“false”);

end

1



Apply this algorithm to the following transition system whose set of atomic propositions
is AP = {a, b}. The invariant Φ to be checked is the propositional logical formula a.
Whenever you iterate over a set of states, always take state si before state sj if i is smaller
than j.
Present the execution of the algorithm by writing down the contents of the set R and the
stack U directly before every call to the function DFS.
Is the sequence of the contents of R and U different for the algorithm in the book?

s0 {a} s1 {a}

s2

{a, b}

s3

{a}

s4

{b}

Exercise 2: Invariant checking II
The “DFS-based invariant checking” algorithm presented above (or in the book) always
computes a minimal bad prefix. However, the algorithm does not necessarily compute a
bad prefix of minimal total length (there might be two minimal bad prefixes of different
length). What is an example that shows that the prefix that is returned does not always
have minimal total length?

For this purpose, provide the following.

� A transition system that has three states s0, s1, s2.

� An invariant.

� The (non-minimal) bad prefix that is computed by the algorithm that uses the
following convention for iterating over a set of states. Always take state si before
state sj if i is smaller than j.

� A minimal bad prefix.

Exercise 3: Invariant checking III
Give an algorithm (in pseudocode, analogously to the algorithm presented above or in
the book) for invariant checking such that, in case the invariant is refuted, a bad prefix
of minimal total length is provided as an error indication.
The algorithm should terminate for all finite transition systems.

Hint : You may modify the algorithm presented above (or in the book) appropriately.
You may also want to use two data structures: A queue and a map.
A queue is a list with two operations:

� void add(Element) adds a new element at the end.

� Element remove() removes the element at the front (FIFO principle).

2



A map behaves like a partial function. That is, it stores a value for a given key. It has
the following operations:

� void add(Key, Value) adds a new mapping from a key to a value.

� Value get(Key) returns the value for the given key.

� boolean has(Key) returns true iff the map stores a value for the given key.

You can use the map to store a predecessor state for a given state. This can be helpful
for constructing the bad prefix in the end.

Exercise 4: Properties of the closure
Prove that for the closure operator closure defined in Definition 3.26 the following inclu-
sion (resp. equality) holds for every linear time property P .

(a) P ⊆ closure(P )

(b) closure(P ) = closure(closure(P )) (the closure operator closure is idempotent)

3


