

Abgabe: 3. November 2017

2. Übungsblatt zur Vorlesung Informatik III

Aufgabe 1: Rechtskongruenz I

3 Punkte

Betrachten Sie die Äquivalenzrelation R_A über beliebigem Alphabet Σ (s. Skript Bsp. 2.8):

$$R_{\mathcal{A}} = \{(u, v) \mid \tilde{\delta}(q^{\text{init}}, u) = \tilde{\delta}(q^{\text{init}}, v)\} \subseteq \Sigma^* \times \Sigma^*$$

Zeigen Sie, dass $R_{\mathcal{A}}$ rechtskongruent ist.

Hinweis: Sie dürfen die folgende Aussage ohne Beweis verwenden.

Für einen beliebigen DEA $(\Sigma, Q, \delta, q^{\text{init}}, F)$ gilt für alle $q \in Q$ und alle $u, v \in \Sigma^*$:

$$\tilde{\delta}(q, u \cdot v) = \tilde{\delta}(\tilde{\delta}(q, u), v).$$

Aufgabe 2: Rechtskongruenz II

3 Punkte

Betrachten Sie die folgende Relation $R \subseteq \Sigma^* \times \Sigma^*$ über $\Sigma = \{a, b\}$:

 $R = \{(u, v) \mid u \text{ enthält höchstens fünf } a \text{ genau dann, wenn } v \text{ höchstens fünf } a \text{ enthält}\}$

- (a) Ist R eine Äquivalenzrelation?
- (b) Ist R rechtskongruent?

Begründen Sie Ihre Behauptungen.

Aufgabe 3: Nerode-Relation

5 Punkte

Betrachten Sie die Nerode-Relation R_L für die folgenden Sprachen über $\Sigma = \{a, b\}$.

$$L_1 = \{ w \in \Sigma^* \mid w \text{ beginnt und endet mit einem } a \}$$

$$L_2 = \{ w \in \Sigma^* \mid w \text{ ist ein Palindrom}^1 \}$$

= $\{ w_0 w_1 \cdots w_n \in \Sigma^* \mid \text{für alle } i = 0, \dots, n \text{ gilt } w_i = w_{n-i} \}$

(a) Geben Sie alle Äquivalenzklassen von R_{L_1} an. Begründen Sie, warum es keine weiteren Äquivalenzklassen gibt.

Konstruieren Sie anschließend den DEA aus Satz 2.5 (Myhill und Nerode), dessen Zustände gerade den Äquivalenzklassen entsprechen.

 $\mathit{Hinweis}$: Sie können zur Hilfestellung zunächst einen DEA für L_1 konstruieren.

(b) Zeigen Sie, dass R_{L_2} einen unendlichen Index besitzt.

¹Ein Wort w ist ein Palindrom, wenn w von rechts nach links gelesen wieder w ergibt.

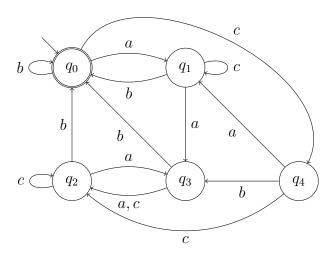
Markierungsalgorithmus

Eingabe: DEA $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$.

Ausgabe: Minimaler DEA für die Sprache L(A).

- 1. Eliminiere in \mathcal{A} alle nicht-erreichbaren Zustände.
- 2. Erstelle eine Tabelle, in der es für jedes Zustandspaar $\{q,q'\}$ mit $q \neq q'$ ein Feld gibt.
- 3. Markiere jedes Zustandspaar $\{q, q'\}$, für das $q \in F$ und $q' \notin F$ gilt.
- 4. Betrachte für jedes unmarkierte Zustandspaar $\{q, q'\}$ und jedes Symbol des Alphabets a das Zustandspaar $\{\delta(q, a), \delta(q', a)\}$. Ist $\{\delta(q, a), \delta(q', a)\}$ markiert, so markiere auch $\{q, q'\}$.
- 5. Wiederhole Schritt 4 so lange, bis es in der Tabelle keine Änderungen mehr gibt.
- 6. Fasse alle Zustände zusammen, deren Zustandspaare nicht markiert sind.

Wenden Sie den Markierungsalgorithmus auf den folgenden DEA über $\Sigma = \{a, b, c\}$ an. Geben Sie zusätzlich zum Ergebnisautomaten auch die verwendete Markierungstabelle an.



Hinweis: Da die Ordnung der Paare keine Rolle spielt, können Sie eine Hälfte der Tabelle ignorieren.