Real-Time Systems

Lecture 2: Timed Behaviour

2017-10-19

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Necessary Ingredients

To develop software that is (provably) correct wrt. its requirements, we need:

(i) a formal model of software behaviour
(ii) a language* to specify requirements on behaviour,
 (to distinguish desired from undesired behaviour).
(iii) a language* to specify behaviour of design ideas,
(iv) a notion of correctness
 (a relation between requirements and design specifications),
(v) and a method to verify (or prove) correctness
 (that a given pair of requirements and design specifications are in correctness relation).

*: at best concisely and conveniently, with adequate expressive power.
A Formal Model of Real-Time Behaviour

- A formal model of real-time behaviour
 - state variables (or observables)
 - evolution over time (or behaviour)
 - discrete time vs. continuous (or dense) time

- Timing diagrams

- Formalising requirements
 - with available tools: logic and analysis
 - concise? convenient?

- Correctness of designs wrt. requirements

- Classes of timed properties
 - safety and liveness properties
 - bounded response and duration properties

- An outlook to Duration Calculus
State Variables (or Observables)

- We assume that the real-time systems we consider are characterised by a finite (!) set of state variables (or observables)
 \[\text{obs}_1, \ldots, \text{obs}_n \]
 each associated with a set \(\mathcal{D}(\text{obs}_i) \), the domain of \(\text{obs}_i \), \(1 \leq i \leq n \).

- **Example:** gas burner

- \(G \)

 \[\mathcal{D}(G) = \{0, 1\} \] — domain value 0 models “valve closed” (value 1: “valve open”)
 (shorthand notation: \(G : \{0, 1\} \))

- \(F \) : \(\{0, 1\} \) — domain value 0 models “no flame sensed” (value 1: “flame sensed”)

- \(I \) : \(\{0, 1\} \) — domain value 0 models “ignition device disabled” (value 1: “ignition enabled”)

- \(H \) : \(\{0, 1\} \) — domain value 0 models “no heating request sensed” (value 1: “heating request”)
Levels of Detail

We can describe a real-time system at various levels of detail by choosing an appropriate domain for each observable.

For example,

- if we need to model a gas valve with different positions (not only “open” and “closed”), we could use
 \[G : \{0, 1, 2\} \rightarrow \{\text{"fully closed"}, \text{"half-open"}, \text{"fully open"}\} \]
 (Note: domains are never continuous in the lecture, otherwise it’s a hybrid system!)

- if the thermostat (sending heating requests) and the gas burner controller are connected via a bus and exchange messages from \(\text{Msg} \), use
 \[B : \text{Msg}^* \]
 to model gas burner controller’s receive buffer as a finite sequence of messages from \(\text{Msg} \).

- etc.

- Choice of observables and their domain is a creative (modelling) act.
 A choice is good if it conveniently serves the modelling purpose.

System Evolution over Time

- One possible evolution (over time), or behaviour, of the considered real-time system is represented as a function
 \[\pi : \text{Time} \rightarrow \mathcal{D}(\text{obs}_1) \times \cdots \times \mathcal{D}(\text{obs}_n). \]
 where Time is the time domain (→ in a minute).

- If (and only if) observable \(\text{obs}_i \) has value \(d_i \in \mathcal{D}(\text{obs}_i) \) at time \(t \in \text{Time} \), \(1 \leq i \leq n \), we set
 \[\pi(t) = (d_1, \ldots, d_n). \]

- For convenience, we use
 \[\text{obs}_i : \text{Time} \rightarrow \mathcal{D}(\text{obs}_i) \]
 to denote the projection of \(\pi \) onto the \(i \)-th component.
What’s the time?

- There are two main choices for the time domain Time:
 - **discrete time**: $\text{Time} = \mathbb{N}_0$, the set of natural numbers.
 - **continuous or dense time**: $\text{Time} = \mathbb{R}_0^+$, the set of non-negative real numbers.

- Throughout the lecture we shall use the continuous time model and consider discrete time as a special case.
 Because
 - plant models usually live in continuous time,
 - we avoid too early introduction introduction of hardware considerations,

- Interesting view: continuous-time is a well-suited abstraction from the discrete-time realms induced by clock-cycles etc.

Example: Gas Burner

An evolution over time of the considered real-time system is represented as function

$$\pi : \text{Time} \to \mathcal{D}(obs_1) \times \cdots \times \mathcal{D}(obs_n)$$

with $\pi(t) = (d_1, \ldots, d_n)$ if (and only if) observable obs_i has value $d_i \in \mathcal{D}(obs_i)$ at time $t \in \text{Time}$, $1 \leq i \leq n$.

For convenience: use $obs_i : \text{Time} \to \mathcal{D}(obs_i)$.

[Diagram of Gas Burner]
An evolution over time of the considered real-time system is represented as function

\[\pi : \text{Time} \rightarrow D(\text{obs}_1) \times \cdots \times D(\text{obs}_n) \]

with \(\pi(t) = (d_1, \ldots, d_n) \) if (and only if) observable \(\text{obs}_i \) has value \(d_i \in D(\text{obs}_i) \) at time \(t \in \text{Time} \), \(1 \leq i \leq n \).

For convenience: use \(\text{obs}_i : \text{Time} \rightarrow D(\text{obs}_i) \).

More Examples: Gas Burner Evolutions

- One ignition failure, success, flame failure.
- No heating request, no heating.
- Reliable ignition, stable flame.
- Spontaneous flame, without request.
An evolution (of a state variable) can be displayed in form of a timing diagram.

For instance,

$$X : \mathcal{D}(X)$$

for $$X : \{d_1, d_2\}$$.

Multiple observables can be combined into a single timing diagram:

Content

- A formal model of real-time behaviour
 - state variables (or observables)
 - evolution over time (or behaviour)
 - discrete time vs. continuous (or dense) time

- Timing diagrams

- Formalising requirements
 - with available tools:
 - logic and analysis
 - concise? convenient?

- Correctness of designs wrt. requirements

- Classes of timed properties
 - safety and liveness properties
 - bounded response and duration properties

- An outlook to Duration Calculus
To develop software that is (provably) correct wrt. its requirements, we need:

(i) a formal model of software behaviour
(ii) a language* to specify requirements on behaviour,
 (to distinguish desired from undesired behaviour).
(iii) a language* to specify behaviour of design ideas.
(iv) a notion of correctness
 (a relation between requirements and design specifications).
(v) and a method to verify (or prove) correctness
 (that a given pair of requirements and design specifications are in correctness relation).

*: at best concisely and conveniently, with adequate expressive power.

Formalising Requirements:
A First Approach with Available Tools
Requirements, More Formally

- A requirement ‘Req’ is a set of system behaviours (over observables) with the pragmatics that,
 - a design or implementation is correct wrt. ‘Req’
 - if and only if all observed behaviours of the design or implementation lie within the set ‘Req’.
- More formally,
 - \(\text{Req} \subseteq (\text{Time} \to \mathcal{D}(\text{obs}_1) \times \cdots \times \mathcal{D}(\text{obs}_n)) \)
 - (‘Req’ is the set of allowed evolutions),
 - let
 \[
 \text{Des} \subseteq (\text{Time} \to \mathcal{D}(\text{obs}_1) \times \cdots \times \mathcal{D}(\text{obs}_n))
 \]
 be the behaviours of a design or implementation;
 - ‘Des’ is correct wrt. ‘Req’ if and only if \(\text{Des} \subseteq \text{Req} \).

- Inconvenient:
 - ‘Req’ is usually an infinite set – we need ways to describe ‘Req’ conveniently.

Available Tools: Logic and Analysis

- A requirement on gas burner controller behaviours could be
 - ‘do not ignite if the valve is closed’.
- Thus, a design ‘Des’ is correct if
 - for all evolutions \(\pi \in \text{Des} \),
 - for all points in time \(t \in \text{Time} \),
 - it is not the case that \(I(t) = 1 \) and \(G(t) = 0 \).
 (Recall: \(I(t) \) is the projection of \(\pi(t) \) on the \(I \)-component.)
 - We can already formalise the above requirement using a logical formula:
 \[
 F := \forall t \in \text{Time} \ . \neg (I(t) = 1 \land G(t) = 0).
 \]
- Then \(\text{Req} = \{ \pi : \text{Time} \to \mathcal{D}(H) \times \mathcal{D}(G) \times \mathcal{D}(I) \times \mathcal{D}(F) \mid \pi \models F \} \).
- In the following, we may identify a requirement and a logical formulae which defines the requirement. We say “requirement \(F \)”.
 IAW: predicate logic formula \(F \) serves as concise description of requirement ‘Req’.
Example: Gas Burner

\[
\text{Req} \iff \forall t \in \text{Time} \cdot \neg (I(t) \land \neg G(t))
\]

\[\pi \in \text{Req}？\]

\[
\begin{align*}
\forall \tau \in \text{Time}, \forall i \in \text{Time} \cdot
&
\neg (I(\tau) \land \neg G(\tau)) \\
&
\pi \cdot \tau = (I(\tau) \land \neg G(\tau))
\end{align*}
\]

\[
\pi : \text{Time} \\
H : 1 \\
G : 1 \\
I : 1 \\
F : 1 \\
\]

Correctness

- Let ‘Req’ be a **requirement**.
- ‘Des’ be a **design**, and
- ‘Impl’ be an **implementation**.

Recall: each is a set of evolutions, i.e. a subset of \((\text{Time} \to \times_{i=1}^{n} D(\text{obs}_i)) \).

We say

- ‘Des’ is a **correct design** (wrt. ‘Req’) if and only if
 \[
 \text{Des} \subseteq \text{Req}.
 \]

- ‘Impl’ is a **correct implementation** (wrt. ‘Des’ (or ‘Req’)) if and only if
 \[
 \text{Impl} \subseteq \text{Des} \quad \text{(or Impl} \subseteq \text{Req)}
 \]

If ‘Req’ and ‘Des’ are described by formulae of first-oder predicate logic, proving the design correct amounts to proving validity of

\[
\not\vdash \text{Des} \implies \text{Req}.
\]
• A formal model of real-time behaviour
 • state variables (or observables)
 • evolution over time (or behaviour)
 • discrete time vs. continuous (or dense) time

• Timing diagrams

• Formalising requirements
 • with available tools: logic and analysis ✓
 • concise? convenient?

• Correctness of designs wrt. requirements

• Classes of timed properties
 • safety and liveness properties
 • bounded response and duration properties

• An outlook to Duration Calculus

Classes of Timed Properties
Safety Properties

- A safety property states that something bad must never happen [Lamport].

- Example: “do not ignite if the valve is closed”

\[
\text{Req} := \forall t \in \text{Time} \bullet \neg (I(t) \land \neg G(t)).
\]

is a safety property.

- In general, a safety property is characterised as a property that can be falsified in bounded time:

 - If a gas burner controller does not satisfy ‘Req,’ there is an evolution \(\pi \) and a time \(t \in \text{Time} \) such that
 \[
 \neg (I(t) \land \neg G(t))
 \]
 does not hold. All later times \(t' > t \) do not make it better.

- But safety is not everything...

Liveness Properties

- The simplest form of a liveness property states that something good eventually does happen.

- Example: “heating requests are finally served”

\[
\forall t \in \text{Time} \bullet (H(t) \land \neg F(t)) \implies (\exists t' \geq t \bullet G(t') \land I(t'))
\]

is a liveness property.

 - Note: a gas burner controller can guarantee that finally the valve is opened and ignition is enabled – but a flame cannot be guaranteed.

- Note: liveness properties not falsified in finite time.

 - if there is a heating request at time \(t \), and at time \(t' > t \), the controller did not enforce \(G(t) \land I(t) \), there may be a later time \(t'' > t' \) where the formula holds.

- With real-time systems, liveness is too weak...
A bounded response property states that the desired reaction on an input occurs in time interval \([b, e]\).

Example: heating requests are served within 3 seconds \(\pm \varepsilon\)
\[
\forall t \in \text{Time} \bullet (H(t) \land \neg F(t)) \implies \left(\exists t' \in [t + 3s - \varepsilon, t + 3s + \varepsilon] \bullet G(t') \land I(t') \right)
\]
is a bounded liveness property.
Here, the interval is \([b, e] = [t + 3s - \varepsilon, t + 3s + \varepsilon]\);
it depends on the time \(t\) of the heating request.

This property can again be falsified in finite time.

With gas burners, this is still not everything...

By the Way: Convenience

It is not so easy to read out

“Heating requests are served within 3 seconds \(\pm \varepsilon\)”

from (lengthy) formula
\[
\forall t \in \text{Time} \bullet (H(t) \land \neg F(t)) \implies \left(\exists t' \in [t + 3s - \varepsilon, t + 3s + \varepsilon] \bullet G(t') \land I(t') \right).
\]

The Duration Calculus formula
\[
(((H \land \neg F) ; \text{true}) \land \neg (G \land I)) \implies 3 - \varepsilon \leq \ell \leq 3 + \varepsilon
\]
is more concise (fewer symbols),
and considered easier to read out by some.
→ in a week.
A duration property states that
- for observation interval \([b, e]\) characterised by a condition \(A(b, e)\),
- the accumulated time
 - in which the system is in a certain critical state characterised by condition \(C(t)\)
 - has an upper bound \(u(b, e)\).

\[
\forall b, e \in \text{Time} \cdot A(b, e) \implies \int_b^e C(t) \, dt \leq u(b, e)
\]

Example: leakage in gas burner,
"At most 5% of any at least 60s long interval amounts to leakage."

\[
\forall b, e \in \text{Time} \cdot (b \leq e \land (e - b) \geq 60) \implies \int_b^e G(t) \land \neg F(t) \, dt \leq 0.05 \cdot (e - b)
\]

is a duration property.
Duration Calculus: Preview

- Duration Calculus is an interval logic.
- Formulae are evaluated in an (implicitly given) interval.

Strangest operators:
- **almost everywhere** – Example: $\lceil G \rceil$
 (Holds in a given interval $[b, e]$ iff the gas valve is open almost everywhere.)
- **chop** – Example: $(\lceil \neg I \rceil ; \lceil I \rceil ; \lceil \neg I \rceil) \implies \ell \geq 1$
 (Ignition phases last at least one time unit.)
- **integral** – Example: $\ell \geq 60 \implies \int L \leq \frac{\ell}{20}$
 (At most 5% leakage time within intervals of at least 60 time units.)

- $G, F, I, H : \{0, 1\}$
- Define $L : \{0, 1\}$ as $G \land \neg F$.
Content

• A formal model of real-time behaviour
 • state variables (or observables)
 • evolution over time (or behaviour)
 • discrete time vs. continuous (or dense) time

• Timing diagrams

• Formalising requirements
 • with available tools: logic and analysis
 • concise? convenient?

• Correctness of designs wrt. requirements

• Classes of timed properties
 • safety and liveness properties
 • bounded response and duration properties

• An outlook to Duration Calculus

Tell Them What You’ve Told Them...

• Evolutions over state variables
 • are a (simple but powerful) formal model of timed behaviour, and
 • can be represented by timing diagrams.

• A requirements specification denotes a set of desired behaviours.

• Example classes of properties are
 • safety: something bad never happens.
 • liveness: something good finally happens.
 • bounded response: good things happen with deadlines.
 • duration: critical conditions have limited duration.

• Real-time requirements can be formalised using just logic and analysis.

But: these specifications easily become hard to read.

• Something more concise and more readable (?): Duration Calculus (→ next week)
References