Real-Time Systems

Lecture 10: PLC Automata

2017-11-30

Dr. Bernd Westphal
Dr. Jochen Hoenicke

Albert-Ludwigs-Universität Freiburg, Germany
The Plan

<table>
<thead>
<tr>
<th>Full DC</th>
<th>DC Implementables</th>
<th>PLC-Automata</th>
<th>IEC 61131-3</th>
<th>Binary</th>
</tr>
</thead>
</table>

- 'Req'
- 'Des'
- 'Impl'

synthesis / code generation (in the book)

by example

(convect?) compiler

prove properties of generated PLCA using DC

prove

prove

prove

\[[A]_{DC} \]

later

\[q_0 \rightarrow \text{no}_{-tr} \rightarrow \text{tr} \rightarrow q_1 \]

\[0.2s \]
How are PLC programmed?

- PLC have in common that they operate in a cyclic manner:
 - read inputs
 - compute
 - write outputs

- Cyclic operation is repeated until external interruption (such as shutdown or reset).
- Cycle time: typically a few milliseconds (Lukoschus, 2004).

- Programming for PLC means providing the “compute” part.
- Input/output values are available via designated local variables.
• Programmable Logic Controllers (PLC) continued

• PLC Automata
 • Example: Stutter Filter
 • PLCA Semantics by example
 • Cycle time

• An over-approximating DC Semantics for PLC Automata
 • observables, DC formulae

• PLCA Semantics at work:
 • effect of transitions (untimed),
 • cycle time, delays, progress.

• Application example: Reaction times
 • Examples: reaction times of the stutter filter
Why Study PLC?
Why study PLC?

- **Note:** the discussion here is not limited to PLC and IEC 61131-3 languages.
Why study PLC?

- **Note**: the discussion here is **not limited** to PLC and IEC 61131-3 languages.

- Any programming language on an operating system with **at least one real-time clock** will do.
Why study PLC?

- **Note:** the discussion here is **not limited** to PLC and IEC 61131-3 languages.

- Any programming language on an operating system with **at least one real-time clock** will do.

 (Where a **real-time clock** is a piece of hardware such that,

 - we can program it to wait for \(t \) time units,

 - we can query whether the set time has elapsed,

 - if we program it to wait for \(t \) time units, it does so with negligible deviation.)
Why study PLC?

- **Note:** the discussion here is not limited to PLC and IEC 61131-3 languages.

- Any programming language on an operating system with at least one real-time clock will do.

 (Where a real-time clock is a piece of hardware such that,
 - we can program it to wait for t time units,
 - we can query whether the set time has elapsed,
 - if we program it to wait for t time units, it does so with negligible deviation.)

Strictly speaking, we don't even need a “full blown” operating system.
Why study PLC?

- **Note:** the discussion here is **not limited** to PLC and IEC 61131-3 languages.

- Any programming language on an operating system with **at least one real-time clock** will do.

 (Where a **real-time clock** is a piece of hardware such that,

 - we can program it to wait for t time units,

 - we can query whether the set time has elapsed,

 - if we program it to wait for t time units, it does so with negligible deviation.)

 Strictly speaking, we don’t even need a “full blown” operating system.

- PLC are just **a formalisation** on a **good level of abstraction**:

 - inputs are **somehow** available as local variables,

 - outputs are **somehow** available as local variables,

 somehow, inputs are polled and outputs are updated,

 there is **some** interface to a real-time clock.
How are PLC programmed, practically?

```plaintext
PROGRAM PLC_PRG_FILTER
VAR
  state : INT := 0; (* 0:=N, 1:=T, 2:=X *)
  tmr : TP;
ENDVAR

IF state = 0 THEN
  %output := N;
  IF %input = tr THEN
    state := 1;
    %output := T;
  ELSIF %input = Error THEN
    state := 2;
    %output := X;
  ENDIF
ENDIF
ELSIF state = 1 THEN
  tmr( IN := TRUE, PT := t#5.0s );
  IF (%input = no_tr AND NOT tmr.Q) THEN
    state := 0;
    %output := N;
    tmr( IN := FALSE, PT := t#0.0s );
  ELSIF %input = Error THEN
    state := 2;
    %output := X;
    tmr( IN := FALSE, PT := t#0.0s );
  ENDIF
ENDIF
ENDF
```

intuitive semantics:
- do the assignment
- if assignment changed IN from FALSE to TRUE ("rising edge on IN") then set tmr to given duration (initially, IN is FALSE)

TRUE: iff tmr is still running (here: if 5 s not yet elapsed)
Alternative Programming Languages by IEC 61131-3

LD \(x \)
OR \(y \)
ST \(z \)

\[z := x \ OR \ y \]

Instruction List
Structured Text

(Relay) Ladder Diagram
Function Block Diagram

Figure 2.2: Implementations of the operation “\(x \) becomes \(y \ OR \ z \)”

Tied together by

- Sequential Function Charts (SFC)

Unfortunate: deviations in semantics... Bauer (2003)

Figure 2.3: Elements of sequential function charts
• Programmable Logic Controllers (PLC) continued

• PLC Automata
 • Example: Stutter Filter
 • PLCA Semantics by example
 • Cycle time

• An over-approximating DC Semantics for PLC Automata
 • observables, DC formulae

• PLCA Semantics at work:
 • effect of transitions (untimed),
 • cycle time, delays, progress.

• Application example: Reaction times
 • Examples:
 reaction times of the stutter filter
PLC Automata
Definition 5.2. A **PLC-Automaton** is a structure

\[A = (Q, \Sigma, \delta, q_0, \varepsilon, S_t, S_e, \Omega, \omega) \]

where

- \((q \in) Q\) is a finite set of **states**, \(q_0 \in Q\) is the **initial state**,
- \((\sigma \in) \Sigma\) is a finite set of **inputs**,
- \(\delta : Q \times \Sigma \rightarrow Q\) is the **transition function** (!),
- \(S_t : Q \rightarrow \mathbb{R}_0^+\) assigns a **delay time** to each state,
- \(S_e : Q \rightarrow 2^\Sigma\) assigns a set of **delayed inputs** to each state,
- \(\Omega\) is a finite, non-empty set of **outputs**,
- \(\omega : Q \rightarrow \Omega\) assigns an **output** to each state,
- \(\varepsilon\) is an **upper time bound** for the execution cycle.
Example: Stutter Filter

- **Idea:** a stutter filter with outputs N and T, for “no train” and “train passing” (and possibly X, for error).

After arrival of a train, it should ignore “no_tr” for 5 seconds.
PLC Automata Example: Stuttering Filter

\[A = (Q = \{q_0, q_1\}, \]
\[\Sigma = \{\text{tr, no_tr}\}, \]
\[\delta = \{(q_0, \text{tr}) \mapsto q_1, (q_0, \text{no_tr}) \mapsto q_0, (q_1, \text{tr}) \mapsto q_1, (q_1, \text{no_tr}) \mapsto q_0\}, \]
\[q_0 = q_0, \]
\[\varepsilon = 0.2, \]
\[S_t = \{q_0 \mapsto 0, q_1 \mapsto 5\}, \]
\[S_e = \{q_0 \mapsto \emptyset, q_1 \mapsto \Sigma\}, \]
\[\Omega = \{N, T\}, \]
\[\omega = \{q_0 \mapsto N, q_1 \mapsto T\} \)
PLC Automata Example: Stuttering Filter

\[A = (Q = \{q_0, q_1\}, \]
\[\Sigma = \{\text{tr, no_tr}\}, \]
\[\delta = \{(q_0, \text{tr}) \mapsto q_1, (q_0, \text{no_tr}) \mapsto q_0, (q_1, \text{tr}) \mapsto q_1, (q_1, \text{no_tr}) \mapsto q_0\}, \]
\[q_0 = q_0, \]
\[\varepsilon = 0.2, \]
\[S_t = \{q_0 \mapsto 0, q_1 \mapsto 5\}, \]
\[S_e = \{q_0 \mapsto \emptyset, q_1 \mapsto \Sigma\}, \]
\[\Omega = \{N, T\}, \]
\[\omega = \{q_0 \mapsto N, q_1 \mapsto T\} \]
PLC Automata Example: Stuttering Filter with Exception
PLC Automata Example: Stuttering Filter with Exception

[Diagram of PLC automata with transitions and states labeled as follows:
- States: N (0s), T (5s), X (0s), X (Os, ∅)
- Transitions: no_tr, tr
- Diagram includes error states and true states.
- Time delays: 0.2s]
PLC Automaton Semantics

PROGRAM PLC_PRG_FILTER
VAR
 state : INT := 0; (* 0:=N, 1:=T, 2:=X *)
 tmr : TP;
ENDVAR

IF state = 0 THEN
 %output := N;
 IF %input = tr THEN
 state := 1;
 %output := T;
 ELSIF %input = Error THEN
 state := 2;
 %output := X;
 ENDIF
ELSIF state = 1 THEN
 tmr(IN := TRUE, PT := t#5.0s);
 IF (%input = no_tr AND NOT tmr.Q) THEN
 state := 0;
 %output := N;
 tmr(IN := FALSE, PT := t#0.0s);
 ELSIF %input = Error THEN
 state := 2;
 %output := X;
 tmr(IN := FALSE, PT := t#0.0s);
 ENDIF
ENDIF
PROGRAM PLC_PRG_FILTER
VAR
 state: INT := 0; (* 0:=N, 1:=T, 2:=X *)
 tmr: TP;
ENDVAR

IF state = 0 THEN
 %output := N;
 IF %input = tr THEN
 state := 1;
 %output := T;
 ENDIF
 ELSIF %input = Error THEN
 state := 2;
 %output := X;
 ENDIF
ELSIF state = 1 THEN
 tmr(IN := TRUE, PT := t#5.0s);
 IF (%input = no_tr AND NOT tmr.Q) THEN
 state := 0;
 %output := N;
 tmr(IN := FALSE, PT := t#0.0s);
 ELSIF %input = Error THEN
 state := 2;
 %output := X;
 tmr(IN := FALSE, PT := t#0.0s);
 ENDIF
ENDIF
ENDIF
PLCA Semantics: Examples

```
PROGRAM PLC_PRG_FILTER
VAR
  state : INT := 0; (* 0:=N, 1:=T, 2:=X *)
  tmr : TP;
ENDVAR

IF state = 0 THEN
  %output := N;
  IF %input = tr THEN
    state := 1;
    %output := T;
  ELSIF %input = Error THEN
    state := 2;
    %output := X;
  ENDIF
ELSIF state = 1 THEN
  tmr( IN := TRUE, PT := t#5.0 s );
  IF (%input = no_tr AND NOT tmr.Q) THEN
    state := 0;
    %output := N;
    tmr( IN := FALSE, PT := t#0.0 s );
  ELSIF %input = Error THEN
    state := 2;
    %output := X;
    tmr( IN := FALSE, PT := t#0.0 s );
  ENDIF
ENDIF
ENDIFF
```

```
PROGRAM PLC_PRG_FILTER
VAR
  state : INT := 0; (* 0:=N, 1:=T, 2:=X *)
  tmr : TP;
ENDVAR

IF state = 0 THEN
  %output := N;
  IF %input = tr THEN
    state := 1;
    %output := T;
  ELSIF %input = Error THEN
    state := 2;
    %output := X;
  ENDIF
ELSIF state = 1 THEN
  tmr( IN := TRUE, PT := t#5.0 s );
  IF (%input = no_tr AND NOT tmr.Q) THEN
    state := 0;
    %output := N;
    tmr( IN := FALSE, PT := t#0.0 s );
  ELSIF %input = Error THEN
    state := 2;
    %output := X;
    tmr( IN := FALSE, PT := t#0.0 s );
  ENDIF
ENDIF
ENDIFF
```
PLCA Semantics: Examples

PROGRAM PLC_PRG_FILTER
VAR
 state : INT := 0; (* 0:=N, 1:=T, 2:=X *)
 tmr : TP;
ENDVAR
IF state = 0 THEN
 %output := N;
 IF %input = tr THEN
 state := 1;
 %output := T;
 ELSEIF %input = Error THEN
 state := 2;
 %output := X;
 ENDIF
ELSIF state = 1 THEN
 tmr(IN := TRUE, PT := t#5.0 s);
 IF (%input = no_tr AND NOT tmr.Q) THEN
 state := 0;
 %output := N;
 tmr(IN := FALSE, PT := t#0.0 s);
 ELSEIF %input = Error THEN
 state := 2;
 %output := X;
 tmr(IN := FALSE, PT := t#0.0 s);
 ENDIF
ENDIF
END

0 0.2 0.4 0.6 0.8

no_tr tr no_tr tr no_tr Error no_tr

|N|N|N|N
\leq \varepsilon
PLCA Semantics: Examples

```
PROGRAM PLC_PRG_FILTER
VAR
  state : INT := 0; (* 0 := N, 1 := T, 2 := X *)
  timer : TP;
ENDVAR

IF state = 0 THEN
  output := N;
  IF input = tr THEN
    state := 1;
    output := T;
  ELSIF input = Error THEN
    state := 2;
    output := X;
  ENDIF
ELSIF state = 1 THEN
  timer (IN := TRUE, PT := t#5.0s);
  IF (input = no_tr AND NOT timer.Q) THEN
    state := 0;
    output := N;
    timer (IN := FALSE, PT := t#0.0s);
  ELSIF input = Error THEN
    state := 2;
    output := X;
    timer (IN := FALSE, PT := t#0.0s);
  ENDIF
ENDIF
```

Diagram showing the PLCA states and transitions:

- N (No Transition)
- T (Transition)
- X (Error)
- Empty States (not transition)

Timers:
- Timer 1: 0.2s
- Timer 2: 5s
PROGRAM PLC_PRG_FILTER
VAR
 state : INT := 0; (* 0:=N, 1:=T, 2:=X *)
 tmr : TP;
ENDVAR

IF state = 0 THEN
 %output := N;
 IF %input = tr THEN
 state := 1;
 %output := T;
 ELSEIF %input = Error THEN
 state := 2;
 %output := X;
 ENDIF
ELSIF state = 1 THEN
 tmr(IN := TRUE, PT := t#5.0 s);
 IF (%input = no_tr AND NOT tmr.Q) THEN
 state := 0;
 %output := N;
 ELSEIF %input = Error THEN
 state := 2;
 %output := X;
 tmr(IN := FALSE, PT := t#0.0 s);
ENDIF
ELSIF state = 2 THEN
 tmr(IN := FALSE, PT := t#0.0 s);
ENDIF
ENDF

<table>
<thead>
<tr>
<th>N</th>
<th>N</th>
<th>N</th>
<th>T</th>
<th>T</th>
</tr>
</thead>
</table>

\[\leq \varepsilon \]
PROGRAM PLC_PRG_FILTER
VAR
 state : INT := 0; (* 0:=N, 1:=T, 2:=X *)
 tmr : TP;
ENDVAR
IF state = 0 THEN
 %output := N;
 IF %input = tr THEN
 state := 1;
 %output := T;
 ELSIF %input = Error THEN
 state := 2;
 %output := X;
 ENDIF
ELSIF state = 1 THEN
 tmr(IN := TRUE, PT := t#5.0 s);
 IF (%input = no_tr AND NOT tmr.Q) THEN
 state := 0;
 %output := N;
 tmr(IN := FALSE, PT := t#0.0 s);
 ELSIF %input = Error THEN
 state := 2;
 %output := X;
 tmr(IN := FALSE, PT := t#0.0 s);
 ENDIF
ENDIF
PLCA Semantics: Examples

PROGRAM PLC_PRG_FILTER
VAR
state : INT := 0; (* 0:=N, 1:=T, 2:=X *)
tmr : TP;
ENDVAR

IF state = 0 THEN
 %output := N;
 IF %input = tr THEN
 state := 1;
 %output := T;
 ELSIF %input = Error THEN
 state := 2;
 %output := X;
 ENDIF
ELSIF state = 1 THEN
 tmr (IN := TRUE, PT := t#5.0 s);
 IF (%input = no_tr AND NOT tmr.Q) THEN
 state := 0;
 %output := N;
 tmr (IN := FALSE, PT := t#0.0 s);
 ELSIF %input = Error THEN
 state := 2;
 %output := X;
 tmr (IN := FALSE, PT := t#0.0 s);
 ENDIF
ENDIF

END.
PLCA Semantics: Examples

```
PROGRAM PLC_PRG_FILTER
VAR
  state : INT := 0; (* 0:=N, 1:=T, 2:=X *)
  tmr : TP;
ENDVAR

IF state = 0 THEN
  %output := N;
  IF %input = tr THEN
    state := 1;
    %output := T;
  ELSIF %input = Error THEN
    state := 2;
    %output := X;
  ENDIF
ELSIF state = 1 THEN
  tmr( IN := TRUE, PT := t#5.0 s );
  IF (%input = no_tr AND NOT tmr.Q) THEN
    state := 0;
    %output := N;
    tmr( IN := FALSE, PT := t#0.0 s );
  ELSIF %input = Error THEN
    state := 2;
    %output := X;
    tmr( IN := FALSE, PT := t#0.0 s );
  ENDIF
ENDIF
END
```
PLCA Semantics: Examples

```
PROGRAM PLC_PRG_FILTER
VAR
  state : INT := 0; (* 0:=N, 1:=T, 2:=X *)
  tmr : TP;
ENDVAR

IF state = 0 THEN
  %output := N;
  IF %input = tr THEN
    state := 1;
    %output := T;
  ELSIF %input = Error THEN
    state := 2;
    %output := X;
  ENDIF
ELSIF state = 1 THEN
  tmr( IN := TRUE, PT := t#5.0 s );
  IF (%input = no_tr AND NOT tmr.Q) THEN
    state := 0;
    %output := N;
    tmr( IN := FALSE, PT := t#0.0 s );
  ELSIF %input = Error THEN
    state := 2;
    %output := X;
    tmr( IN := FALSE, PT := t#0.0 s );
  ENDIF
ENDIF
```

Diagram:

- **States:**
 - N: no_tr
 - T: tr
 - X: Error

- **Transitions:**
 - N to T: 0.2 s
 - T to N: 5 s, \{no_tr, tr\}
 - N to X: 0.2 s

- **Timers:**
 - tmr

- **Program Flow:**
 0.2 s
 0.4 s
 0.6 s
 0.8 s

- **Input/Output States:**
 - no_tr
 - tr
 - no_tr
 - Error
 - no_tr
We assess correctness in terms of cycle time ε...

...but where does the cycle time come from?
We assess correctness in terms of cycle time ε...

...but where does the cycle time come from?

- First of all, ST on the hardware has a cycle time
 - so we can measure it – if it is larger than ε, don’t use this program on this PLC hardware;
 - we can estimate (approximate) the worst case execution time (WCET), if it’s larger than ε, don’t use it, if it’s smaller we’re safe.

(Major obstacle: caches, out-of-order execution, ….)
We assess correctness in terms of cycle time ε...

...but where does the cycle time come from?

- First of all, ST on the hardware has a cycle time
 - so we can measure it – if it is larger than ε, don’t use this program on this PLC hardware;
 - we can estimate (approximate) the worst case execution time (WCET), if it’s larger than ε, don’t use it, if it’s smaller we’re safe.

 (Major obstacle: caches, out-of-order execution, ….)

- Some PLC have a watchdog:
 - set it to ε,
 - if the current “computing” cycle takes longer,
 - then the watchdog forces the PLC into an error state and signals the error condition
An Overapproximating DC Semantics for PLC Automata
Interesting Overall Approach

- Define **PLC Automaton syntax** (abstract and concrete).

- Define **PLC Automaton semantics** by translation to ST (structured text).
Interesting Overall Approach

- Define **PLC Automaton syntax** (abstract and concrete).

- Define **PLC Automaton semantics** by translation to ST (structured text).

- Give DC **over-approximation** of PLC Automaton semantics.
 - **In other words:** define a DC formula $\llbracket A \rrbracket_{DC}$ such that

 \[
 \{ I \in \llbracket A \rrbracket \} \implies I \models \llbracket A \rrbracket_{DC}
 \]

 but not necessarily the other way round.
 - **In even other words:** $\llbracket A \rrbracket \subseteq \{ I \mid I \models \llbracket A \rrbracket_{DC} \}$.

Interesting Overall Approach

- Define **PLC Automaton syntax** (abstract and concrete).
- Define **PLC Automaton semantics** by translation to ST (structured text).
- Give DC **over-approximation** of PLC Automaton semantics.
 - **In other words:** define a DC formula $\llbracket A \rrbracket_{DC}$ such that
 \[
 I \in \llbracket A \rrbracket \Rightarrow I \models \llbracket A \rrbracket_{DC}
 \]
 but not necessarily the other way round.
 - **In even other words:** “$\llbracket A \rrbracket$” $\subseteq \{ I \mid I \models \llbracket A \rrbracket_{DC} \}$.
- **Applications:**
 - Assess **correctness** of over-approximation wrt. DC requirements.
 If $\models \llbracket A \rrbracket_{DC} \implies$ Req for a given PLCA A, the A is **correct**.
 - Prove **generic properties** of PLCA using DC, like reaction time.
Observables

- Consider the PLCA

\[\mathcal{A} = (Q, \Sigma, \delta, q_0, \varepsilon, S_t, S_e, \Omega, \omega). \]

- The DC formula \([\mathcal{A}]_{DC}\) we construct ranges over the observables

 - \(\text{In}_\mathcal{A} : \Sigma\) – values of the inputs
 - \(\text{St}_\mathcal{A} : Q\) – current local state
 - \(\text{Out}_\mathcal{A} : \Omega\) – values of the outputs
Overview

\[\mathcal{A} = (Q, \Sigma, \delta, q_0, \varepsilon, S_t, S_e, \Omega, \omega) \]

- \(A \) arbitrary with \(\emptyset \neq A \subseteq \Sigma \).
- \([q \land A]\) abbreviates \([\text{St}_A = q \land \ln_A \in A]\).
- \(\delta(q, A) \) abbreviates \(\text{St}_A \in \{\delta(q, a) \mid a \in A\} \).

- **Initial State:**
 \[
 \left(\left[\neg q \right] ; \left[q \land A \right] \right) \quad \text{true} \]
 \(\text{St}_A = q_0 \)
 \(\text{(DC-1)} \)

- **Effect of Transitions:**
 \[
 \left[q \land A \right] \xrightarrow{\varepsilon} \left[q \land \delta(q, A) \right]
 \text{St}_A = q \land \ln_A \in A
 \text{St}_A \in \delta(q, a) \mid a \in A
 \]
 \(\text{(DC-2)} \)
 \[
 \left[q \land A \right] \rightarrow \left[q \lor \delta(q, A) \right]
 \text{(DC-3)}
 \]
Overview

\[\mathcal{A} = (Q, \Sigma, \delta, q_0, \varepsilon, S_t, S_e, \Omega, \omega) \]

- **Initial State:**
 \[[\top] \lor [q_0] ; \text{true} \quad \text{(DC-1)} \]

- **Effect of Transitions:**
 \[[\neg q] ; [q \land A] \rightarrow [q \lor \delta(q, A)] \quad \text{(DC-2)} \]

does not affect \[q \land A \], \[\varepsilon \rightarrow [q \lor \delta(q, A)] \]

- **Delays:**
 \[S_t(q) > 0 \implies [\neg q] ; [q \land A] \xrightarrow{\leq S_t(q)} [q \lor \delta(q, A \setminus S_e(q))] \quad \text{(DC-4)} \]
 \[S_t(q) > 0 \implies [\neg q] ; [q] ; [q \land A] \xrightarrow{\leq S_t(q)} [q \lor \delta(q, A \setminus S_e(q))] \quad \text{(DC-5)} \]
Overview

A = (Q, Σ, δ, q₀, ε, St, Sₑ, Ω, ω)

- A arbitrary with ∅ ≠ A ⊆ Σ,
- [q ∧ A] abbreviates
 [Stₐ = q ∧ lnₐ ∈ A],
- δ(q, A) abbreviates
 Stₐ ∈ {δ(q, a) | a ∈ A}.

- Progress from non-delayed inputs:

 \[S_t(q) = 0 \land q \notin δ(q, A) \implies □([q \land A] \implies ℓ < 2ε) \] \hspace{1cm} (DC-6)

 \[S_t(q) = 0 \land q \notin δ(q, A) \implies [\neg q] ; [q \land A]^{ε} \rightarrow [\neg q] \] \hspace{1cm} (DC-7)
Overview

\[A = (Q, \Sigma, \delta, q_0, \varepsilon, S_t, S_e, \Omega, \omega) \]

- A arbitrary with \(\emptyset \neq A \subseteq \Sigma \),
- \([q \land A]\) abbreviates \([\text{St}_A = q \land \text{In}_A \in A]\),
- \(\delta(q, A)\) abbreviates \(\text{St}_A \in \{\delta(q, a) | a \in A\}\).

• Progress from non-delayed inputs:

\[
S_t(q) = 0 \land q \notin \delta(q, A) \implies \square([q \land A] \implies \ell < 2\varepsilon) \quad \text{(DC-6)}
\]

\[
S_t(q) = 0 \land q \notin \delta(q, A) \implies [\neg q] ; [q \land A]^\varepsilon \rightarrow [\neg q] \quad \text{(DC-7)}
\]

• Progress from delayed inputs:

\[
S_t(q) > 0 \land q \notin \delta(q, A)
\]

\[
\implies \square([q]^{S_t(q)} ; [q \land A] \implies \ell < S_t(q) + 2\varepsilon) \quad \text{(DC-8)}
\]

\[
S_t(q) > 0 \land A \cap S_e(q) = \emptyset \land q \notin \delta(q, A)
\]

\[
\implies \square([q \land A] \implies \ell < 2\varepsilon) \quad \text{(DC-9)}
\]

\[
S_t(q) > 0 \land A \cap S_e(q) = \emptyset \land q \notin \delta(q, A)
\]

\[
\implies [\neg q] ; [q \land A]^\varepsilon \rightarrow [\neg q] \quad \text{(DC-10)}
\]
How to Read these Formulae

- How to read these formulae?
 - A is a set with $\emptyset \neq A \subseteq \Sigma$,
 - $[q \land A]$ abbreviates $[\text{St}_A = q \land \text{In}_A \in A]$,
 - $\delta(q, A)$ abbreviates $\text{St}_A \in \{\delta(q, a) \mid a \in A\}$.

\[
\begin{align*}
\neg q ; [q \land A] & \rightarrow [q \lor \delta(q, A)] \\
[q \land A] & \xrightarrow{\varepsilon} [q \lor \delta(q, A)]
\end{align*}
\] (DC-2) (DC-3)
How to Read these Formulae

\[\neg q ; [q \land A] \rightarrow [q \lor \delta(q, A)] \]
\[[q \land A] \varepsilon \rightarrow [q \lor \delta(q, A)] \]

How to read these formulae?

- \(A \) is a set with \(\emptyset \neq A \subseteq \Sigma \),
- \([q \land A] \) abbreviates \(\text{St}_A = q \land \text{ln}_A \in A \),
- \(\delta(q, A) \) abbreviates \(\text{St}_A \in \{ \delta(q, a) \mid a \in A \} \).
How to Read these Formulae

\[[\neg q] ; [q \land A] \rightarrow [q \lor \delta(q, A)] \quad \text{(DC-2)} \]
\[[q \land A] \xrightarrow{\varepsilon} [q \lor \delta(q, A)] \quad \text{(DC-3)} \]

- How to read these formulae?
 - \(A \) is a set with \(\emptyset \neq A \subseteq \Sigma \),
 - \([q \land A]\) abbreviates \([\text{St}_A = q \land \text{ln}_A \in A]\),
 - \(\delta(q, A)\) abbreviates \(\text{St}_A \in \{\delta(q, a) \mid a \in A\}\).

- For the stutter filter, (DC-3) abbreviates:

\[[\neg q_1] ; [q_1 \land \{\text{no_tr}\}] \xrightarrow{\varepsilon} [q_1 \lor q_1] \]
\[\land [\neg q_1] ; [q_1 \land \{\text{tr}\}] \xrightarrow{\varepsilon} [q_1 \lor q_2] \]
\[\land [\neg q_1] ; [q_1 \land \{\text{Error}\}] \xrightarrow{\varepsilon} [q_1 \lor q_3] \]
\[\land [\neg q_1] ; [q_1 \land \{\text{no_tr}, \text{tr}\}] \xrightarrow{\varepsilon} [q_1 \lor q_1 \lor q_2] \]
\[\land [\neg q_1] ; [q_1 \land \{\text{no_tr}, \text{Error}\}] \xrightarrow{\varepsilon} [q_1 \lor q_1 \lor q_3] \]
\[\land [\neg q_1] ; [q_1 \land \{\text{tr}, \text{Error}\}] \xrightarrow{\varepsilon} [q_1 \lor q_2 \lor q_3] \]
\[\land [\neg q_1] ; [q_1 \land \{\text{no_tr}, \text{tr}, \text{Error}\}] \xrightarrow{\varepsilon} [q_1 \lor q_2 \lor q_3] \]
(DC-2): Effect of Transitions

\[
[q_1 \land A] \quad \text{holds in} \quad \left[t_0, t_1 \right] \\
A = \{\text{no_tr}\} \\
\text{After} \quad t_1 \\
\text{state} \quad \{q_1, q_2\} \\
\text{output} \quad \{N\}
\]

\[
[q_1 \land A] \quad \text{holds in} \quad \left[t_0, t_2 \right] \\
A = \{\text{no_tr, tr}\} \\
\text{After} \quad t_2 \\
\text{state} \quad \{q_1, q_2\} \\
\text{output} \quad \{N, T\}
\]

\[
[q_1 \land A] \quad \text{holds in} \quad \left[t_0, t_3 \right] \\
A = \{\text{no_tr, tr}\} \\
\text{After} \quad t_3 \\
\text{state} \quad \{q_1, q_2\} \\
\text{output} \quad \{N, T\}
\]

\[
[q_1 \land A] \quad \text{holds in} \quad \left[t_0, t_4 \right] \\
A = \{\text{no_tr, tr}\} \\
\text{After} \quad t_4 \\
\text{state} \quad \{q_1, q_2\} \\
\text{output} \quad \{N, T\}
\]

\[
[q_1 \land A] \quad \text{holds in} \quad \left[t_0, t_5 \right] \\
A = \{\text{no_tr, tr, Error}\} \\
\text{After} \quad t_5 \\
\text{state} \quad \{q_1, q_2, q_3\} \\
\text{output} \quad \{N, T, X\}
\]

\[
[q_1 \land A] \quad \text{holds in} \quad \left[t_0, t_6 \right] \\
A = \{\text{no_tr, tr, Error}\} \\
\text{After} \quad t_6 \\
\text{state} \quad \{q_1, q_2, q_3\} \\
\text{output} \quad \{N, T, X\}
\]
(DC-2): Effect of Transitions

- **Effect of Transitions:**

- **Diagram:**
 - Transition not taken: \(\text{no}_\text{tr} \)
 - Transition taken: \(\text{tr} \)

- **States:**
 - \(N \)
 - \(T \)
 - \(X \)

- **Initial State:**
 - \(q_1 \)
 - \(q_2 \)
 - \(q_3 \)

- **Transition Times:**
 - \(0.2 \) seconds

- **Input and Output Diagram:**
 - Input: \(\text{no}_\text{tr} \), \(\text{tr} \), \(\text{no}_\text{tr} \), \(\text{Error} \)
 - Time: \(t_0, t_1, t_2, t_3, t_4, t_5, t_6 \)

- **Formula:**
 \[
 \neg q; [q \wedge A] \longrightarrow [q \vee \delta(q, A)]
 \]

- **Table:**

<table>
<thead>
<tr>
<th>(q_1 \wedge A) holds in</th>
<th>with input</th>
<th>After</th>
<th>state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>([t_0, t_1])</td>
<td>(A = {\text{no}_\text{tr}})</td>
<td>(t_1)</td>
<td>({q_1})</td>
<td>({N})</td>
</tr>
<tr>
<td>([t_0, t_2])</td>
<td>(A = {\text{no}_\text{tr}, \text{tr}})</td>
<td>(t_2)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_3])</td>
<td>(A = {\text{no}_\text{tr}, \text{tr}})</td>
<td>(t_3)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_4])</td>
<td>(A = {\text{no}_\text{tr}, \text{tr}})</td>
<td>(t_4)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_5])</td>
<td>(A = {\text{no}_\text{tr}, \text{tr}, \text{Error}})</td>
<td>(t_5)</td>
<td>({q_1, q_2, q_3})</td>
<td>({N, T, X})</td>
</tr>
<tr>
<td>([t_0, t_6])</td>
<td>(A = {\text{no}_\text{tr}, \text{tr}, \text{Error}})</td>
<td>(t_6)</td>
<td>({q_1, q_2, q_3})</td>
<td>({N, T, X})</td>
</tr>
</tbody>
</table>
(DC-2): Effect of Transitions

Diagram:

The diagram illustrates the effect of transitions with states and inputs over time.

- **States:**
 - N
 - T
 - X

- **Inputs:**
 - no_tr
 - tr

- **Output:**
 - N
 - T
 - X

Transitions Overview:

<table>
<thead>
<tr>
<th>Transition</th>
<th>Input</th>
<th>Time</th>
<th>State Changes</th>
<th>Output Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 0.2]</td>
<td>no_tr</td>
<td>t_0</td>
<td>q_2</td>
<td>q_1</td>
</tr>
<tr>
<td>[0.2, 0.4]</td>
<td>tr</td>
<td>t_1</td>
<td>q_1</td>
<td>N</td>
</tr>
<tr>
<td>[0.4, 0.8]</td>
<td>no_tr</td>
<td>t_2</td>
<td>q_1, q_2</td>
<td>N, T</td>
</tr>
<tr>
<td>[0.8, 1]</td>
<td>tr</td>
<td>t_3</td>
<td>q_1, q_2</td>
<td>N, T</td>
</tr>
<tr>
<td>[1, 1.2]</td>
<td>tr</td>
<td>t_4</td>
<td>q_1, q_2</td>
<td>N, T</td>
</tr>
<tr>
<td>[1.2, 2]</td>
<td>no_tr, tr, Error</td>
<td>t_5</td>
<td>q_1, q_2, q_3</td>
<td>N, T, X</td>
</tr>
<tr>
<td>[2, 2.2]</td>
<td>no_tr, tr, Error</td>
<td>t_6</td>
<td>q_1, q_2, q_3</td>
<td>N, T, X</td>
</tr>
</tbody>
</table>

Formal Expression:

\[
\neg q; [q \land A] \rightarrow [q \lor \delta(q, A)]
\]
(DC-2): Effect of Transitions

\[
\neg q ; [q \land A] \longrightarrow [q \lor \delta(q, A)]
\]

<table>
<thead>
<tr>
<th>([q_1 \land A]) holds in</th>
<th>with input</th>
<th>After</th>
<th>state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>([t_0, t_1])</td>
<td>(A = {\text{no_tr}})</td>
<td>(t_1)</td>
<td>({q_1})</td>
<td>({N})</td>
</tr>
<tr>
<td>([t_0, t_2])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_2)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_3])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_3)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_4])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_4)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_5])</td>
<td>(A = {\text{no_tr, tr, Error}})</td>
<td>(t_5)</td>
<td>({q_1, q_2, q_3})</td>
<td>({N, T, X})</td>
</tr>
<tr>
<td>([t_0, t_6])</td>
<td>(A = {\text{no_tr, tr, Error}})</td>
<td>(t_6)</td>
<td>({q_1, q_2, q_3})</td>
<td>({N, T, X})</td>
</tr>
</tbody>
</table>
Effect of Transitions

\[\neg q ; [q \land A] \rightarrow [q \lor \delta(q, A)] \]

Table: Change in State and Output

<table>
<thead>
<tr>
<th>Interval ([t_0, t_1])</th>
<th>Input ([A])</th>
<th>After ([t_1])</th>
<th>State ([{\text{state}}}])</th>
<th>Output ([{\text{output}}}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>([t_0, t_1])</td>
<td>(A = {\text{no_tr}})</td>
<td>(t_1)</td>
<td>({q_1})</td>
<td>({N})</td>
</tr>
<tr>
<td>([t_0, t_2])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_2)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_3])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_3)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_4])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_4)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_5])</td>
<td>(A = {\text{no_tr, tr, Error}})</td>
<td>(t_5)</td>
<td>({q_1, q_2, q_3})</td>
<td>({N, T, X})</td>
</tr>
<tr>
<td>([t_0, t_6])</td>
<td>(A = {\text{no_tr, tr, Error}})</td>
<td>(t_6)</td>
<td>({q_1, q_2, q_3})</td>
<td>({N, T, X})</td>
</tr>
</tbody>
</table>
(DC-2): Effect of Transitions

\[\neg q \land [q \land A] \rightarrow [q \lor \delta(q, A)] \]

<table>
<thead>
<tr>
<th>([q_1 \land A]) holds in</th>
<th>with input</th>
<th>After</th>
<th>state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>([t_0, t_1])</td>
<td>(A = {\text{no_tr}})</td>
<td>(t_1)</td>
<td>({q_1})</td>
<td>({N})</td>
</tr>
<tr>
<td>([t_0, t_2])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_2)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_3])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_3)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_4])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_4)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_5])</td>
<td>(A = {\text{no_tr, tr, Error}})</td>
<td>(t_5)</td>
<td>({q_1, q_2, q_3})</td>
<td>({N, T, X})</td>
</tr>
<tr>
<td>([t_0, t_6])</td>
<td>(A = {\text{no_tr, tr, Error}})</td>
<td>(t_6)</td>
<td>({q_1, q_2, q_3})</td>
<td>({N, T, X})</td>
</tr>
</tbody>
</table>
(DC-2): Effect of Transitions

\[\neg q \land \left[q \land A \right] \rightarrow \left[q \lor \delta(q, A) \right] \tag{DC-2} \]

<table>
<thead>
<tr>
<th>([q_1 \land A]) holds in</th>
<th>with input</th>
<th>After</th>
<th>state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>([t_0, t_1])</td>
<td>(A = {\text{no_tr}})</td>
<td>(t_1)</td>
<td>({q_1})</td>
<td>({N})</td>
</tr>
<tr>
<td>([t_0, t_2])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_2)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_3])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_3)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_4])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_4)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_0, t_5])</td>
<td>(A = {\text{no_tr, tr, Error}})</td>
<td>(t_5)</td>
<td>({q_1, q_2, q_3})</td>
<td>({N, T, X})</td>
</tr>
<tr>
<td>([t_0, t_6])</td>
<td>(A = {\text{no_tr, tr, Error}})</td>
<td>(t_6)</td>
<td>({q_1, q_2, q_3})</td>
<td>({N, T, X})</td>
</tr>
</tbody>
</table>
(DC-3): Inputs and Cycle Time

\[
[q \land A] \xrightarrow{\epsilon} [q \lor \delta(q, A)]
\]

(DC-3)
(DC-3): Inputs and Cycle Time

\[[q \land A] \xrightarrow{\varepsilon} [q \lor \delta(q, A)] \]

(DC-3)
DC-3): Inputs and Cycle Time

\[
[q \land A] \xrightarrow{\varepsilon} [q \lor \delta(q, A)] \quad \text{(DC-3)}
\]

<table>
<thead>
<tr>
<th>([q_1 \land A]) holds in</th>
<th>with input (A)</th>
<th>After</th>
<th>state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>([t_1, t_2])</td>
<td>(A = {\text{no\textunderscore tr, tr}})</td>
<td>(t_2)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_2, t_3])</td>
<td>(A = {\text{no\textunderscore tr, tr}})</td>
<td>(t_3)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_3, t_4])</td>
<td>(A = {\text{no\textunderscore tr}})</td>
<td>(t_4)</td>
<td>({q_1})</td>
<td>({N})</td>
</tr>
<tr>
<td>([t_4, t_5])</td>
<td>(A = {\text{no\textunderscore tr, Error}})</td>
<td>(t_5)</td>
<td>({q_1, q_3})</td>
<td>({N, X})</td>
</tr>
<tr>
<td>([t_5, t_6])</td>
<td>(A = {\text{Error}})</td>
<td>(t_6)</td>
<td>({q_1, q_3})</td>
<td>({N, X})</td>
</tr>
</tbody>
</table>
(DC-3): Inputs and Cycle Time

\[
[q \land A] \xrightarrow{\varepsilon} [q \lor \delta(q, A)]
\]

<table>
<thead>
<tr>
<th>[[q_1 \land A]] holds in</th>
<th>with input</th>
<th>After</th>
<th>state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[t_1, t_2]]</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_2)</td>
<td>(q_1, q_2)</td>
<td>({N, T})</td>
</tr>
<tr>
<td>[[t_2, t_3]]</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_3)</td>
<td>(q_1, q_2)</td>
<td>({N, T})</td>
</tr>
<tr>
<td>[[t_3, t_4]]</td>
<td>(A = {\text{no_tr}})</td>
<td>(t_4)</td>
<td>(q_1)</td>
<td>({N})</td>
</tr>
<tr>
<td>[[t_4, t_5]]</td>
<td>(A = {\text{no_tr, Error}})</td>
<td>(t_5)</td>
<td>(q_1, q_3)</td>
<td>({N, X})</td>
</tr>
<tr>
<td>[[t_5, t_6]]</td>
<td>(A = {\text{Error}})</td>
<td>(t_6)</td>
<td>(q_1, q_3)</td>
<td>({N, X})</td>
</tr>
</tbody>
</table>
(DC-3): Inputs and Cycle Time

\[[q \land A] \xrightarrow{\varepsilon} [q \lor \delta(q, A)] \]

<table>
<thead>
<tr>
<th>([q_1 \land A]) holds in</th>
<th>with input</th>
<th>After</th>
<th>state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>([t_1, t_2])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_2)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_2, t_3])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_3)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_3, t_4])</td>
<td>(A = {\text{no_tr}})</td>
<td>(t_4)</td>
<td>({q_1})</td>
<td>({N})</td>
</tr>
<tr>
<td>([t_4, t_5])</td>
<td>(A = {\text{no_tr, Error}})</td>
<td>(t_5)</td>
<td>({q_1, q_3})</td>
<td>({N, X})</td>
</tr>
<tr>
<td>([t_5, t_6])</td>
<td>(A = {\text{Error}})</td>
<td>(t_6)</td>
<td>({q_1, q_3})</td>
<td>({N, X})</td>
</tr>
</tbody>
</table>
(DC-3): Inputs and Cycle Time

\[[q \wedge A] \xrightarrow{\epsilon} [q \lor \delta(q, A)] \]

<table>
<thead>
<tr>
<th>$[q_1 \wedge A]$ holds in</th>
<th>with input</th>
<th>After</th>
<th>state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[t_1, t_2]$</td>
<td>$A = {\text{no_tr}, \text{tr}}$</td>
<td>t_2</td>
<td>${q_1, q_2}$</td>
<td>${N, T}$</td>
</tr>
<tr>
<td>$[t_2, t_3]$</td>
<td>$A = {\text{no_tr}, \text{tr}}$</td>
<td>t_3</td>
<td>${q_1, q_2}$</td>
<td>${N, T}$</td>
</tr>
<tr>
<td>$[t_3, t_4]$</td>
<td>$A = {\text{no_tr}}$</td>
<td>t_4</td>
<td>${q_1}$</td>
<td>${N}$</td>
</tr>
<tr>
<td>$[t_4, t_5]$</td>
<td>$A = {\text{no_tr}, \text{Error}}$</td>
<td>t_5</td>
<td>${q_1, q_3}$</td>
<td>${N, X}$</td>
</tr>
<tr>
<td>$[t_5, t_6]$</td>
<td>$A = {\text{Error}}$</td>
<td>t_6</td>
<td>${q_1, q_3}$</td>
<td>${N, X}$</td>
</tr>
</tbody>
</table>
(DC-3): Inputs and Cycle Time

\[[q \land A] \xrightarrow{\varepsilon} [q \lor \delta(q, A)] \]

<table>
<thead>
<tr>
<th>([q_1 \land A]) holds in</th>
<th>with input</th>
<th>After</th>
<th>state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>([t_1, t_2])</td>
<td>(A = {\text{no_tr}, \text{tr}})</td>
<td>(t_2)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_2, t_3])</td>
<td>(A = {\text{no_tr}, \text{tr}})</td>
<td>(t_3)</td>
<td>({q_1, q_2})</td>
<td>({N, T})</td>
</tr>
<tr>
<td>([t_3, t_4])</td>
<td>(A = {\text{no_tr}})</td>
<td>(t_4)</td>
<td>({q_1})</td>
<td>({N})</td>
</tr>
<tr>
<td>([t_4, t_5])</td>
<td>(A = {\text{no_tr}, \text{Error}})</td>
<td>(t_5)</td>
<td>({q_1, q_3})</td>
<td>({N, X})</td>
</tr>
<tr>
<td>([t_5, t_6])</td>
<td>(A = {\text{Error}})</td>
<td>(t_6)</td>
<td>({q_1, q_3})</td>
<td>({N, X})</td>
</tr>
</tbody>
</table>
(DC-3): Inputs and Cycle Time

\[[q \land A] \xrightarrow{\varepsilon} [q \lor \delta(q, A)] \]

\begin{align*}
\begin{array}{c|c|c|c}
[q_1 \land A] & \text{holds in} & \text{with input} & \text{After} & \text{state} & \text{output} \\
\hline
[t_1, t_2] & A = \{no_tr, tr\} & t_2 & \{q_1, q_2\} & \{N, T\} \\
[t_2, t_3] & A = \{no_tr, tr\} & t_3 & \{q_1, q_2\} & \{N, T\} \\
[t_3, t_4] & A = \{no_tr\} & t_4 & \{q_1\} & \{N\} \\
[t_4, t_5] & A = \{no_tr, Error\} & t_5 & \{q_1, q_3\} & \{N, X\} \\
[t_5, t_6] & A = \{Error\} & t_6 & \{q_1, q_3\} & \{N, X\}
\end{array}
\end{align*}
\begin{align*}
S_t(q) > 0 \implies \boxed{\neg q} ; \boxed{[q \land A]} \xrightarrow{\leq S_t(q)} \boxed{[q \lor \delta(q, A \setminus S^e(q))]} \tag{DC-4}
\end{align*}

<table>
<thead>
<tr>
<th>$[q_1 \land A]$ holds in</th>
<th>with input</th>
<th>After t_i</th>
<th>state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[t_0, t_1]$</td>
<td>$A = {\text{no\textunderscore tr}}$</td>
<td>t_1</td>
<td>${q_2}$</td>
<td>${T}$</td>
</tr>
<tr>
<td>$[t_0, t_2]$</td>
<td>$A = {\text{no\textunderscore tr}, \text{tr}}$</td>
<td>t_2</td>
<td>${q_2}$</td>
<td>${T}$</td>
</tr>
<tr>
<td>$[t_0, t_3]$</td>
<td>$A = {\text{no\textunderscore tr}, \text{tr}, \text{Error}}$</td>
<td>t_3</td>
<td>${q_2, q_3}$</td>
<td>${T, X}$</td>
</tr>
<tr>
<td>$[t_0, t_4]$</td>
<td>$A = {\text{no\textunderscore tr}, \text{tr}, \text{Error}}$</td>
<td>t_4</td>
<td>${q_2, q_3}$</td>
<td>${T, X}$</td>
</tr>
<tr>
<td>$[t_0, t_5]$</td>
<td>$A = {\text{no\textunderscore tr}, \text{tr}, \text{Error}}$</td>
<td>t_5</td>
<td>${q_2, q_3}$</td>
<td>${T, X}$</td>
</tr>
<tr>
<td>$[t_0, t_6]$</td>
<td>$A = {\text{no\textunderscore tr}, \text{tr}, \text{Error}}$</td>
<td>t_6</td>
<td>${q_2, q_3}$</td>
<td>${T, X}$</td>
</tr>
</tbody>
</table>
(DC-5): Delays

\[S_t(q) > 0 \implies [\neg q] ; [q] ; [q \land A] \overset{\leq S_t(q)}{\rightarrow} [q \lor \delta(q, A \setminus S_e(q))] \]

<table>
<thead>
<tr>
<th>([q_1 \land A]) holds in</th>
<th>with input</th>
<th>After</th>
<th>state</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>([t_1, t_2])</td>
<td>(A = {\text{no_tr, tr}})</td>
<td>(t_2)</td>
<td>({q_2})</td>
<td>({T})</td>
</tr>
<tr>
<td>([t_2, t_3])</td>
<td>(A = {\text{tr, Error}})</td>
<td>(t_3)</td>
<td>({q_2, q_3})</td>
<td>({T, X})</td>
</tr>
<tr>
<td>([t_3, t_4])</td>
<td>(A = {\text{no_tr, Error}})</td>
<td>(t_4)</td>
<td>({q_2, q_3})</td>
<td>({T, X})</td>
</tr>
<tr>
<td>([t_4, t_5])</td>
<td>(A = {\text{no_tr}})</td>
<td>(t_5)</td>
<td>({q_2})</td>
<td>({T})</td>
</tr>
<tr>
<td>([t_5, t_6])</td>
<td>(A = {\text{no_tr, Error}})</td>
<td>(t_6)</td>
<td>({q_2, q_3})</td>
<td>({T, X})</td>
</tr>
</tbody>
</table>
(DC-6) / (DC-7): Progress from non-delayed inputs

\[S_t(q) = 0 \land q \notin \delta(q, A) \implies \Box([q \land A] \implies \ell < 2\varepsilon) \]

\[S_t(q) = 0 \land q \notin \delta(q, A) \implies [\neg q] ; [q \land A]^\varepsilon \rightarrow [\neg q] \]

- Due to (DC-6):
 - \(t_5 - t_4 < 2\varepsilon \)
 - \(t_3 - t_2 < 2\varepsilon \)

- Due to (DC-7):
 - \(t_1 - t_0 < \varepsilon \)
(DC-8, DC-9, DC-10): Progress from delayed inputs

\[S_t(q) > 0 \land q \notin \delta(q, A) \]
\[\implies \Box([q]^{S_t(q)}; [q \land A] \implies \ell < S_t(q) + 2\varepsilon) \]

\[S_t(q) > 0 \land A \cap S_e(q) = \emptyset \land q \notin \delta(q, A) \]
\[\implies \Box([q \land A] \implies \ell < 2\varepsilon) \]

\[S_t(q) > 0 \land A \cap S_e(q) = \emptyset \land q \notin \delta(q, A) \]
\[\implies [\neg q]; [q \land A]^\varepsilon \rightarrow [\neg q] \]

- Due to (DC-8):
 - \(t_5 - t_4 < 2\varepsilon \)

- Due to (DC-9):
 - \(t_3 - t_2 < 2\varepsilon \)

- Due to (DC-10):
 - \(t_1 - t_0 < \varepsilon \)
(DC-11): Behaviour of the Output and System Start

\[\square([q] \implies [\omega(q)]) \]

(DC-11)
(DC-11): Behaviour of the Output and System Start

\[\square([q] \implies [\omega(q)]) \] \hfill (DC-11)

\[[q_0 \land A] \xrightarrow{\leq S_t(q_0)} [q_0 \lor \delta(q_0, A)] \] \hfill (DC-2')

\[S_t(q_0) > 0 \implies [q_0 \land A] \xrightarrow{\leq S_t(q_0)} [q_0 \lor \delta(q_0, A \setminus S_e(q_0))] \] \hfill (DC-4')

\[S_t(q_0) > 0 \implies [q_0] ; [q_0 \land A]^\varepsilon \xrightarrow{\leq S_t(q_0)} [q_0 \lor \delta(q_0, A \setminus S_e(q_0))] \] \hfill (DC-5')

\[S_t(q_0) = 0 \land q_0 \notin \delta(q_0, A) \implies [q_0 \land A]^\varepsilon \xrightarrow{0} [\neg q_0] \] \hfill (DC-7')

\[S_t(q_0) > 0 \land A \cap S_e(q_0) = \emptyset \land q_0 \notin \delta(q_0, A) \implies [q_0 \land A]^\varepsilon \xrightarrow{0} [\neg q_0] \] \hfill (DC-10')
Definition 5.3.

The **Duration Calculus semantics** of a PLC Automaton A is

$$[[A]]_{DC} := \bigwedge_{q \in Q, \emptyset \neq A \subseteq \Sigma} \text{DC-1} \land \cdots \land \text{DC-11} \land \text{DC-2}' \land \text{DC-4}' \land \text{DC-5}' \land \text{DC-7}' \land \text{DC-10}'. $$

Claim:

- Let P_A be the ST program semantics of A.
- Let π be a recording over time of then inputs, local states, and outputs of a PLC device running the ST P_A.
- Let I_π be an encoding of π as an interpretation of In_A, St_A, and Out_A.
- Then $I_\pi \models [[A]]_{DC}$. (But not necessarily the other way round.)
Content

- Programmable Logic Controllers (PLC) continued

- PLC Automata
 - **Example**: Stutter Filter
 - **PLCA Semantics** by example
 - **Cycle time**

- An over-approximating
 - **DC Semantics** for PLC Automata
 - **observables**, **DC formulae**

- **PLCA Semantics** at work:
 - effect of **transitions** (untimed),
 - **cycle time**, **delays**, **progress**.

- Application example: **Reaction times**
 - **Examples**:
 - reaction times of the stutter filter
One Application: Reaction Times
Given a PLC-Automaton, one often wants to know whether it guarantees properties of the form

\[
[\text{St}_A \in Q \land \text{In}_A = \text{emergency_signal}] \xrightarrow{0.1} [\text{St}_A = \text{motor_off}]
\]
One Application: Reaction Times

- Given a PLC-Automaton, one often wants to know whether it guarantees properties of the form

\[
\left[\text{St}_A \in Q \land \text{ln}_A = \text{emergency}_\text{signal} \right] \xrightarrow{0.1} \left[\text{St}_A = \text{motor}_\text{off} \right]
\]

(“whenever the emergency signal is observed, the PLC Automaton switches the motor off within at most 0.1 seconds”)

- Which is (why?) far from obvious from the PLC Automaton in general.
One Application: Reaction Times

- Given a PLC-Automaton, one often wants to know whether it guarantees properties of the form

\[
\left[\text{St}_A \in Q \land \text{ln}_A = \text{emergency_signal} \right] \xrightarrow{0.1} \left[\text{St}_A = \text{motor_off} \right]
\]

(“whenever the emergency signal is observed, the PLC Automaton switches the motor off within at most 0.1 seconds”)

- Which is (why?) far from obvious from the PLC Automaton in general.

- We will give a theorem, which allows us to compute an upper bound on such reaction times.

- Then in the above example, we could simply compare this upper bound one against the required 0.1 seconds.
The Reaction Time Problem in General

- Let
 - \(\Pi \subseteq Q \) be a set of start states,
 - \(A \subseteq \Sigma \) be a set of inputs,
 - \(c \in \text{Time} \) be a time bound, and
 - \(\Pi_{\text{target}} \subseteq Q \) be a set of target states.

- Then we seek to establish properties of the form

\[
\left[\text{St}_A \in \Pi \land \text{ln}_A \in A \right] \xrightarrow{c} \left[\text{St}_A \in \Pi_{\text{target}} \right],
\]

abbreviated as

\[
\left[\Pi \land A \right] \xrightarrow{c} \left[\Pi_{\text{target}} \right].
\]
Actually, the reaction time theorem addresses only the special case

\[[\Pi \land A] \xrightarrow{c_n} [\delta^n(\Pi, A)] = \Pi_{\text{target}} \]

for PLC Automata with

\[\delta(\Pi, A) \subseteq \Pi. \]

Where the transition function is canonically extended to sets of start states and inputs:

\[\delta(\Pi, A) := \{\delta(q, a) \mid q \in \Pi \land a \in A\}. \]
Examples:

- $\Pi = \{N, T\}$, $A = \{\text{no_tr}\}$

- $\delta(\Pi, A) = \{N\} \subseteq \Pi$
Examples:

- $\Pi = \{N, T\}$, $A = \{\text{no_tr}\}$

- $\delta(\Pi, A) = \{N\} \subseteq \Pi$
Premise Examples

Examples:

- \(\Pi = \{N, T\}, \ A = \{\text{no_tr}\} \)
 - \(\delta(\Pi, A) = \{N\} \subseteq \Pi \)

- \(\Pi = \{N, T, X\}, \ A = \{\text{Error}\} \)
 - \(\delta(\Pi, A) = \{X\} \subseteq \Pi \)
Premise Examples

Examples:

- $\Pi = \{N, T\}, \quad A = \{\text{no_tr}\}$
 - $\delta(\Pi, A) = \{N\} \subseteq \Pi$

- $\Pi = \{N, T, X\}, \quad A = \{\text{Error}\}$
 - $\delta(\Pi, A) = \{X\} \subseteq \Pi$
Examples:

- $\Pi = \{N, T\}, \ A = \{\text{no_tr}\}$

 $\delta(\Pi, A) = \{N\} \subseteq \Pi$

- $\Pi = \{N, T, X\}, \ A = \{\text{Error}\}$

 $\delta(\Pi, A) = \{X\} \subseteq \Pi$

- $\Pi = \{T\}, \ A = \{\text{no_tr}\}$

 $\delta(\Pi, A) = \{N\} \not\subseteq \Pi$
Examples:

- $\Pi = \{N, T\}$, $A = \{\text{no_tr}\}$
 - $\delta(\Pi, A) = \{N\} \subseteq \Pi$

- $\Pi = \{N, T, X\}$, $A = \{\text{Error}\}$
 - $\delta(\Pi, A) = \{X\} \subseteq \Pi$

- $\Pi = \{T\}$, $A = \{\text{no_tr}\}$
 - $\delta(\Pi, A) = \{N\} \not \subseteq \Pi$
Theorem 5.6.
Let \(A = (Q, \Sigma, \delta, q_0, \varepsilon, S_t, S_e, \Omega, \omega) \), \(\Pi \subseteq Q \), and \(A \subseteq \Sigma \) with
\[
\delta(\Pi, A) \subseteq \Pi.
\]
Then
\[
[\Pi \land A] \xrightarrow{c} [\delta(\Pi, A)] = \Pi_{target}
\]
where
\[
c := \varepsilon + \max(\{0\} \cup \{s(\pi, A) \mid \pi \in \Pi \setminus \delta(\Pi, A)\})
\]
and
\[
s(\pi, A) := \begin{cases}
S_t(\pi) + 2\varepsilon & \text{, if } S_t(\pi) > 0 \text{ and } A \cap S_e(\pi) \neq \emptyset \\
\varepsilon & \text{, otherwise.}
\end{cases}
\]
(1) If we are in state N or T, how long does N or T need to persist together with input no_tr, to ensure that we observe N again?
(1) If we are in state N or T, how long does N or T need to persist together with input no_tr, to ensure that we observe N again?

Your estimation?

- ε
- 2ε
- 3ε
- 5 s
- $5\text{ s }+ \varepsilon$
- $5\text{ s }+ 2\varepsilon$
- $5\text{ s }+ 3\varepsilon$
- ...

![Diagram illustrating the states and transitions](image-url)
(1) If we are in state N or T, how long does N or T need to persist together with input no_tr, to ensure that we observe N again?

$$\lceil \{N, T\} \land \{\text{no}_\text{tr}\} \rceil \xrightarrow{5+3\varepsilon} \lceil N \rceil$$
(1) If we are in state N or T, how long does N or T need to persist together with input no_tr, to ensure that we observe N again?

$$[\{N, T\} \land \{\text{no_tr}\}] \xrightarrow{5+3\varepsilon} [N]$$

- **Because:** earlier we have shown

$$\delta(\{N, T\}, \{\text{no_tr}\}) = \{N\}$$
(1) If we are in state N or T, how long does N or T need to persist together with input no_tr, to ensure that we observe N again?

$$\lceil \{N, T\} \land \{\text{no_tr}\} \rceil \xrightarrow{5+3\varepsilon} \lceil N \rceil$$

- **Because:** earlier we have shown

$$\delta(\{N, T\}, \{\text{no_tr}\}) = \{N\}$$

- Thus Theorem 5.6 yields

$$\lceil \{N, T\} \land \{\text{no_tr}\} \rceil \xrightarrow{c} \lceil N \rceil$$
(1) If we are in state N or T, how long does N or T need to persist together with input $\text{no}__\text{tr}$, to ensure that we observe N again?

\[
[\{N, T\} \land \{\text{no}__\text{tr}\}] \xrightarrow{5+3\varepsilon} [N]
\]

- **Because**: earlier we have shown

\[
\delta(\{N, T\}, \{\text{no}__\text{tr}\}) = \{N\}
\]

- **Thus** Theorem 5.6 yields

\[
[\{N, T\} \land \{\text{no}__\text{tr}\}] \xrightarrow{c} [N]
\]

with

\[
c = \varepsilon + \max(\{0\} \cup \{s(\pi, \{\text{no}__\text{tr}\}) \mid \pi \in \{N, T\} \setminus \{N\}\})
\]

\[
= \varepsilon + \max(\{0\} \cup \{s(T, \{\text{no}__\text{tr}\})\})
\]

\[
= \varepsilon + 5 + 2\varepsilon = 5 + 3\varepsilon
\]
(2) If we are in state N, T, or X, how long does input Error need to persist to ensure that we observe X again?
(2) If we are in state N, T, or X, how long does input Error need to persist to ensure that we observe X again?

$$\lceil\{N, T, X\} \land \{\text{Error}\}\rceil \xrightarrow{2\varepsilon} \lceil X \rceil$$
(2) If we are in state N, T, or X, how long does input Error need to persist to ensure that we observe X again?

\[
\left[\{N, T, X\} \land \{\text{Error}\}\right] \xrightarrow{2\varepsilon} [X]
\]

- **Because:** earlier we have shown

\[
\delta(\{N, T, X\}, \{\text{Error}\}) = \{X\}
\]
(2) If we are in state \(N, T, \) or \(X, \) how long does input Error need to persist to ensure that we observe \(X \) again?

\[
\left[\{N, T, X\} \land \{\text{Error}\} \right] \overset{2\varepsilon}{\longrightarrow} \left[X \right]
\]

- **Because**: earlier we have shown

\[
\delta(\{N, T, X\}, \{\text{Error}\}) = \{X\}
\]

- **Thus Theorem 5.6 yields**

\[
\left[\{N, T, X\} \land \{\text{Error}\} \right] \overset{c}{\longrightarrow} \left[X \right]
\]
(2) If we are in state N, T, or X, how long does input Error need to persist to ensure that we observe X again?

$$\left[\{N, T, X\} \land \{\text{Error}\}\right] \xrightarrow{2\epsilon} [X]$$

- **Because**: earlier we have shown

$$\delta(\{N, T, X\}, \{\text{Error}\}) = \{X\}$$

- Thus Theorem 5.6 yields

$$\left[\{N, T, X\} \land \{\text{Error}\}\right] \xrightarrow{c} [X]$$

with

$$c = \epsilon + \max(\{0\} \cup \{s(\pi, \{\text{Error}\}) \mid \pi \in \{N, T, X\} \setminus \{X\}\})$$

$$= \epsilon + \max(\{0\} \cup \{s(N, \{\text{Error}\}), s(T, \{\text{Error}\})\})$$

$$= \epsilon + \epsilon = 2\epsilon$$
(2) If we are in state N or T, how long do inputs n_o_tr or tr need to persist to ensure that we observe N or T again?
(2) If we are in state \(N \) or \(T \), how long do inputs \(\text{no_tr} \) or \(\text{tr} \) need to persist to ensure that we observe \(N \) or \(T \) again?

\[
\left\{ N, T \right\} \land \left\{ \text{no_tr}, \text{tr} \right\} \xrightarrow{\varepsilon} \left[N, T \right]
\]
(2) If we are in state N or T, how long do inputs no_tr or tr need to persist to ensure that we observe N or T again?

$$\left[\{N, T\} \land \{\text{no_tr, tr}\}\right] \xrightarrow{\varepsilon} [N, T]$$

- **Because**: earlier we have shown

$$\delta(\{N, T\}, \{\text{no_tr, tr}\}) = \{N, T\}$$
(2) If we are in state N or T, how long do inputs no_tr or tr need to persist to ensure that we observe N or T again?

$$\{\{N, T\} \land \{\text{no_tr}, \text{tr}\}\} \xrightarrow{\varepsilon} \{N, T\}$$

- **Because**: earlier we have shown

$$\delta(\{N, T\}, \{\text{no_tr}, \text{tr}\}) = \{N, T\}$$

- **Thus Theorem 5.6 yields**

$$\{\{N, T\} \land \{\text{no_tr}, \text{tr}\}\} \xrightarrow{c} \{N, T\}$$
(2) If we are in state N or T,
how long do inputs no_tr or tr need to persist
to ensure that we observe N or T again?

$$[\{N, T\} \land \{\text{no}_\text{tr}, \text{tr}\}] \xrightarrow{\varepsilon} [N, T]$$

- **Because**: earlier we have shown

 $$\delta(\{N, T\}, \{\text{no}_\text{tr}, \text{tr}\}) = \{N, T\}$$

- **Thus Theorem 5.6 yields**

 $$[\{N, T\} \land \{\text{no}_\text{tr}, \text{tr}\}] \xrightarrow{c} [N, T]$$

with

$$c = \varepsilon + \max(\{0\} \cup \{s(\pi, \{\text{no}_\text{tr}, \text{tr}\}) \mid \pi \in \{N, T\} \setminus \{N, T\}\})$$

$$= \varepsilon + \max(\{0\} \cup \emptyset)$$

$$= \varepsilon$$
Monotonicity of Generalised Transition Function

- Define
\[\delta^0(\Pi, A) := \Pi, \quad \delta^{n+1}(\Pi, A) := \delta(\delta^n(\Pi, A), A). \]

- If we have \(\delta(\Pi, A) \subseteq \Pi \), then we have
\[
\delta^{n+1}(\Pi, A) \subseteq \delta^n(\Pi, A) \subseteq \cdots \subseteq \delta(\delta(\Pi, A), A) \subseteq \delta(\Pi, A) \subseteq \Pi
\]

i.e. the sequence is a **contraction**.

- Because the extended transition function has the following (not so surprising) **monotonicity** property:

\[
\text{Proposition 5.4.} \quad \Pi \subseteq \Pi' \subseteq Q \text{ and } A \subseteq A' \subseteq \Sigma \text{ implies } \delta(\Pi, A) \subseteq \delta(\Pi', A').
\]
Contraction Examples

Examples:

- $\Pi = \{N, T\}, A = \{\text{no}_\text{tr}\}$

- $\delta^0(\Pi, A) = \{N, T\}$
Contraction Examples

Examples:

- $\Pi = \{N, T\}, A = \{\text{no_tr}\}$
- $\delta^0(\Pi, A) = \{N, T\}$
Contraction Examples

Examples:

- $\Pi = \{N, T\}, A = \{\text{no_tr}\}$
- $\delta^0(\Pi, A) = \{N, T\}$
- $\delta(\delta^0(\Pi, A), A) = \{N\} \subseteq \Pi$
Contraction Examples

Examples:

- $\Pi = \{N, T\}$, $A = \{\text{no_tr}\}$
- $\delta^0(\Pi, A) = \{N, T\}$
- $\delta(\delta^0(\Pi, A), A) = \{N\} \subseteq \Pi$
Examples:

- $\Pi = \{N, T\}$, $A = \{\text{no_tr}\}$
- $\delta^0(\Pi, A) = \{N, T\}$
- $\delta(\delta^0(\Pi, A), A) = \{N\} \subseteq \Pi$
- $\delta^n(\delta^0(\Pi, A), A) = \{N\}$
Contraction Examples

Examples:

- \(\Pi = \{N, T\}, A = \{\text{no_tr}\} \)
- \(\delta^0(\Pi, A) = \{N, T\} \)
- \(\delta(\delta^0(\Pi, A), A) = \{N\} \subseteq \Pi \)
- \(\delta^n(\delta^0(\Pi, A), A) = \{N\} \)
Contraction Examples

Examples:

- $\Pi = \{N,T\}, A = \{\text{no_tr}\}$
 - $\delta^0(\Pi, A) = \{N, T\}$
 - $\delta(\delta^0(\Pi, A), A) = \{N\} \subseteq \Pi$
 - $\delta^n(\delta^0(\Pi, A), A) = \{N\}$

- $\Pi = \{N, T, X\}, A = \{\text{Error}\}$
 - $\delta^0(\Pi, A) = \{N, T, X\}$
 - $\delta(\delta^0(\Pi, A), A) = \{X\} \subseteq \Pi$
 - $\delta^n(\delta^0(\Pi, A), A) = \{X\}$
Contraction Examples

Examples:

- \(\Pi = \{N,T\}, A = \{\text{no_tr}\} \)
 - \(\delta^0(\Pi, A) = \{N, T\} \)
 - \(\delta(\delta^0(\Pi, A), A) = \{N\} \subseteq \Pi \)
 - \(\delta^n(\delta^0(\Pi, A), A) = \{N\} \)

- \(\Pi = \{N,T,X\}, A = \{\text{Error}\} \)
 - \(\delta^0(\Pi, A) = \{N, T, X\} \)
 - \(\delta(\delta^0(\Pi, A), A) = \{X\} \subseteq \Pi \)
 - \(\delta^n(\delta^0(\Pi, A), A) = \{X\} \)
Contraction Examples

Examples:
- $\Pi = \{N,T\}, A = \{\text{no}_\text{tr}\}$
 - $\delta^0(\Pi, A) = \{N,T\}$
 - $\delta(\delta^0(\Pi, A), A) = \{N\} \subseteq \Pi$
 - $\delta^n(\delta^0(\Pi, A), A) = \{N\}$
- $\Pi = \{N,T,X\}, A = \{\text{Error}\}$
 - $\delta^0(\Pi, A) = \{N,T,X\}$
 - $\delta(\delta^0(\Pi, A), A) = \{X\} \subseteq \Pi$
 - $\delta^n(\delta^0(\Pi, A), A) = \{X\}$
- $\Pi = \{T\}, A = \{\text{no}_\text{tr}\}$
 - $\delta(\Pi, A) = \{N\} \notin \Pi$
Contraction Examples

Examples:

- $\Pi = \{N, T\}, A = \{\text{no}_\text{tr}\}$
 - $\delta^0(\Pi, A) = \{N, T\}$
 - $\delta(\delta^0(\Pi, A), A) = \{N\} \subseteq \Pi$
 - $\delta^n(\delta^0(\Pi, A), A) = \{N\}$

- $\Pi = \{N, T, X\}, A = \{\text{Error}\}$
 - $\delta^0(\Pi, A) = \{N, T, X\}$
 - $\delta(\delta^0(\Pi, A), A) = \{X\} \subseteq \Pi$
 - $\delta^n(\delta^0(\Pi, A), A) = \{X\}$

- $\Pi = \{T\}, A = \{\text{no}_\text{tr}\}$
 - $\delta(\Pi, A) = \{N\} \not\subseteq \Pi$
Theorem 5.8.
Let $A = (Q, \Sigma, \delta, q_0, \varepsilon, S_t, S_e, \Omega, \omega)$, $\Pi \subseteq Q$, and $A \subseteq \Sigma$ with

$$\delta(\Pi, A) \subseteq \Pi.$$

Then for all $n \in \mathbb{N}_0$,

$$[\Pi \land A] \xrightarrow{c_n} [\delta^n(\Pi, A)] = \Pi_{target}$$

where

$$c_n := \varepsilon + \max\left(\{0\} \cup \left\{ \sum_{i=1}^k s(\pi_i, A) \right\} \right)$$

and $s(\pi, A)$ as before.
(by contradiction)

- Assume, we would not have

\[[\Pi \land A] \xrightarrow{c_n} [\delta^n (\Pi, A)] . \]
Proof Idea of Reaction Time Theorem

(by contradiction)

• Assume, we would not have

\[[\Pi \land A] \overset{c_n}{\rightarrow} [\delta^n (\Pi, A)]. \]

• This is equivalent to not having

\[\neg (true ; [\Pi \land A]^{c_n} ; \neg \delta^n (\Pi, A) ; true) \]
Proof Idea of Reaction Time Theorem

(by contradiction)

- Assume, we would not have

\[
[\Pi \land A]^{c_n} \rightarrow [\delta^n (\Pi, A)].
\]

- This is equivalent to not having

\[
\neg (true ; [\Pi \land A]^{c_n} ; [\neg \delta^n (\Pi, A)] ; true)
\]

- Which is equivalent to having

\[
true ; [\Pi \land A]^{c_n} ; [\neg \delta^n (\Pi, A)] ; true.
\]
Proof Idea of Reaction Time Theorem

(by contradiction)

- Assume, we would not have

\[[\Pi \land A] \xrightarrow{c_n} [\delta^n (\Pi, A)]. \]

- This is equivalent to not having

\[\neg \left(true ; [\Pi \land A]^{c_n} ; [\neg \delta^n (\Pi, A)] ; true \right) \]

- Which is equivalent to having

\[true ; [\Pi \land A]^{c_n} ; [\neg \delta^n (\Pi, A)] ; true. \]

- Using finite variability, (DC-2), (DC-3), (DC-6), (DC-7), (DC-8), (DC-9), and (DC-10) we can show that the duration of \([\Pi \land A]\) is strictly smaller than \(c_n\).
Content

- Programmable Logic Controllers (PLC) continued

- PLC Automata
 - Example: Stutter Filter
 - PLCA Semantics by example
 - Cycle time

- An over-approximating DC Semantics for PLC Automata
 - observables, DC formulae

- PLCA Semantics at work:
 - effect of transitions (untimed),
 - cycle time, delays, progress.

- Application example: Reaction times
 - Examples:
 reaction times of the stutter filter
Tell Them What You’ve Told Them...

- **Programmable Logic Controllers (PLC)** are epitomic for real-time controller platforms:
 - have **real-time clock** device, **read inputs** / **write outputs**, manage **local state**.

- The set of evolutions of a **PLC Automaton** can be over-approximated by a set of **DC formulae**.

- This **DC-Semantics** of PLCA can be used to establish **generic properties** of PLCA like **reaction time**.

- The **reaction time theorems** give us “recipes” to analyse PLCA for reaction time (just considering the PLCA, not its DC semantics).

- And that’s **Duration Calculus** for now…
 - Next block: **Timed Automata**
 - Later: verifying that a **Network of Timed Automata satisfies** a requirement formalised using DC. Thus connecting both “worlds”.
Content

Introduction

• Observables and Evolutions
• Duration Calculus (DC)
• Semantical Correctness Proofs
• DC Decidability
• DC Implementables
• PLC-Automata

• Timed Automata (TA), Uppaal
• Networks of Timed Automata
• Region/Zone-Abstraction
• TA model-checking
• Extended Timed Automata
• Undecidability Results

\[\text{obs} : \text{Time} \rightarrow \mathcal{D}(\text{obs}) \]

\[\langle \text{obs}_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_0} \langle \text{obs}_1, \nu_1 \rangle, t_1 \ldots \]

• Automatic Verification...
 ...whether a TA satisfies a DC formula, observer-based

• Recent Results:
 • Timed Sequence Diagrams, or Quasi-equal Clocks,
 or Automatic Code Generation, or …
References