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The Location Reachability Problem

Given: A timed automaton A and one of its locations /.
Question: Is £ reachable?
That is, is there a transition sequence of the form

The Location Reachability Problem Binis 70) 25 (€1, 01) 225 (€2, 2) 225 ... 22 (0, w0} with £, = £ Decidability of Location Reachability for TA

in the labelled transition system 7°(A)?

Note: Decidability is not soo obvious, recall that

« clocks range over real numbers, thus infinitely many configurations,

« at each configuration, uncountably many transitions - may of

Consequence: The timed automata as we consider them here cannot encode a
2-counter machine, and they are strictly less expressive than DC.
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Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

« Observe: clock constraints are simple
- wlog assume constants ¢ € No.

o Def. 4.19: time-abstract transition system
U(A) - abstracts from uncountably many
delay transitions, still infinite-state.

Lemma 4.20: location reachability
of Ais preserved in U(A).

Def. 4.29: region automaton R(A) -
equivalent configurations collapse into regions

.

Lemma 4.32: location reachability
of U(A) is preserved in R(A).

o Lemma 4.28: R(A) is finite.

Without Loss of Generality: Natural Constants

Recll pi=z~cl|z_y~clphp mycX, ceQand ~e (<> <>} |

o Let C(A) = {c € Q] | cappearsin A} - C(A)is finite! (Why?)
e Lett, be the least common multiple of the denominators in C(A).
o Lett - .Abe the TA obtained from A by multiplying all constants by ¢ 4.

Ge= b

85

Without Loss of Generality: Natural Constants

Tmmnm__“ pu=a~clz—y~c|loAp, z,yeX, ceQf,and ~e T.YWWL

o Let C(A) = {c € Q] | cappearsin A} - C(A)is finite! (Why?)
o Lett 4 be the least common multiple of the denominators in C(A).
o Lett 4 - Abe the TA obtained from A by multiplying all constants by ¢ 4.

A: /H () -6 o=14 st
A@ §A© ta=12.

Without Loss of Generality: Natural Constants

Recall: p:=z~c|la—y~c|pAp, z,y€X, ceQf.and ~e T.v.m.w:

o Let C(A) = {c € Q] | cappearsin A} - C(A)is finite! (Why?)
o Leti4 be the least common multiple of the denominators in C(.A).
o Lett, - Abe the TA obtained from A by multiplying all constants by ¢ 4.
o Then:
o C(ta-A) C No.

« Alocation ¢ is reachable in ¢ 4 - A if and only if ¢ is reachable in A.

» Thatis: we can, without loss of generality, in the following
consider only timed automata A with C'(A) ¢ INy.

ion. Let 2 be a clock of timed automaton A (with C'(A) € Np).

We denote by c, € INy the largest time constant ¢ that appears together
with z in a constraint of A.

Without Loss of Generality: Natural Constants

72»:” pu=a~c|lz—y~c|lpAp, zyeX, ceQf,and ~e{<,> <, >}

o LetC(A) = {c € Q] | cappearsin A} - C(A)is finite! (Why?)
o Let ¢4 be the least common multiple of the denominators in C(A).
o Lett, - Abe the TA obtained from A by multiplying all constants by ¢ 4.

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.
/Observe: clock constraints are simple

- w.log assume constants c € No.
X Def. 4.19: time-abstract transition system

U(A) - abstracts from uncountably many
delay transitions, finite-state.

x

Lemma 4.20: location reachability
of s preserved in(A).

Def. 4.29: region automaton R(A) -
equivalent configurations collapse into regions

x

x

Lemma 4.32: location reachability
of U(A) is preserved in R(A).

Lemma 4.28: R(A) is finite.

x




Time-abstract Transition System Example 7 (6,v) =2 (¢, v') iff 3t € Time o (6,0) B o & (¢,0/)

Helper: Relational Composition

{2 A € Time U Ba}, Cini)

Recall: 7(A) = (Conf(A), TimeU ion 4.19. [Time-abstract transition system]

Let A be a timed automaton.

< The time-abstract transition system 1/(A) is obtained
from T (A) (Def. 4.4) by taking

« Note: The 2 are binary relations on configurations. /%,

Definition. Let Abe a TA. Forall (¢1, 1), (¢2, Conf(A), o
efinition. Le e a Qm\A_S:m/_\me onf (A) U(A) = (Conf(A), B, {=2] a € Bar}, Cint)

. - "
(t1,01) 22 0 22 (£, 1)

if and only if there exists some (¢, ') € Conf (A) such that

where
=25C Conf(A) x Conf(A)

press?,

o (light,w = 0) "7 (off,z = 27)  YES.with 1 = 27 we have (l

27) L%, 0,27)

is defined as follows:  Let (£, v), (¢',1) € Conf(A) be configurations of

Aand o € By an action. Then o (off,x = 4) %" (light,z = 0)  YES.anyt € R works

(tr,00) 25 (¢ 0') and (,0) 22 (63, v)

Mo 8V
(Lv) = (2,0) o (off.w = 4) "5 light x = 1) NO. (0,4) 5 o 2, (1,1')im
: ) ) o= ress? W
Remark. The following property of time add frerlemy iR es & Tiearh .:a\_ o loffr = 0) " ght o =5 Nomoast 05 ® (0)
Vi, by € Time i 0 12, = 41tla (L) 502 (¢, V). o (off,x = 0) "Z5" (bright, s = 5)  NO.needs two actions
1t € Time : 2y 0 2, = Gtt2y
i o (lightx = 1) "7 (bright,z = 1) YES.witht =0
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Location Reachability is preserved in U(A) Decidability of The Location Reachability Problem

Location Reachability is preserved in U(A)

Claim: (Theorem 4.33)
ed automaton A the fol- . . .
The location reachability problem is decidable for timed automata.

Lemma 4.20. For all locations ¢ of a given

ren timed automaton A the fol-
lowing holds:

Lemma 4.20. For all locations ¢ of a
lowing holds:

£is (2-Jreachable in 7(A) if and only if ¢ is (<%>-)reachable in 2/(.4). £is (2-)reachable in 7 (4) if and only if ¢ is (<2-)reachable in /(A). Approach: Constructive proof.
' Observe: clock constraints are simple

- wlog assume constants ¢ € No.

Proof:
Tigy o S g g . /x\u&. 419: time-abstract transition system
—= = /}u o “e=": easy o € No.ie. U(A) - abstracts from uncountably many
hable i " AT i Sequence may be delay transitions, finite-state.
- 2 in jshpf - — s “=":lisreachablein 7(A) . ooty y
(0, 10) 5 (fo1sv01) =25 (fogsv0a) =2 -+ =250,y v Y EA1 1) N \ v rwaai.no” _oma_o:ams% ty
i T o ; o of Ais preserved in U(A).
S ) 2, {3, 02) i (to, vo)-2 (60 Vos) 0 2000 ) 2 (61, 0m) P 4
g R X Def. 4.29: region automaton R(A) -
. tng amt1 ! . equivalent configurations collapse into regions
— g vmy ) — — (€, vm+1)
iy . by 20 22, — X Lemma 4.32: location reachability
o \ = (L) of U(A) is preserved in R (A).
. o an X Lemma 4.28: R(A) is finite.
implies (£o, vo) <5 (£, 1) <57 5 (0 v,,11) .
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Indistinguishable Configurations

Pizxme ey [ G¥

U(A):

- B light, - = 0)

\\ _ 601

Helper: Floor and Fraction

o Recall:
Each ¢ € Ry} can be splitinto
+ floor [g) eNoand - Lo/
o fraction frac(q) € [0,1)

such that
4= gl + frac(q)-

L31t)=13
fee (316) = 0.4

Distinguishing Clock Valuations: One Clock

(off,z =
(off, z = 3.0) 2% ..
(off, & = 3.001)
(off, - = 127.1415) =5 .

» Assume A with only a single clock, i.e. X = {z} (recall: C(A) c IN).

* Acould detect, for a given v,
whether v(z) € {0,...,¢.}.

apen iwkeval
* A cannot distinguisf(; and v
ifvi(z) € (b k+1]i=1,2,

andk € {0,...,c, — 1}

* A cannot distinguish v and v,
if vi(x) > cpi=1,2.

o If ¢, > 1, there are (2¢, + 2) equivalence classes:

{H{01(0,1), {1}, (1,2), .. {er}, (ea, 00

If v () and v () are in the same equivalence class,
then v, and 1 are indistiguishable by A.

An Equivalence-Relation on Valuations

v1, v2 clock valuations of X.

() Forallz € X with 11 (x) < cx.

(3) Forallz,y € X,

[v1(2) = va(y)] = [va(
or both | (:

(4) Forallz,y € X with —c < vi(x) —11(y) < ¢

Where ¢ = max{c,, ¢, }.

ion. Let X be a set of clocks, ¢, € IN, for each clock = € X, and

We set v, = v, if and only if the following four conditions are satisfied:

(1) Forallz € X, |1(2)] = [va(x)] orboth vy () > ¢, and va(z) > cz.

Jrac(v(x)) = 0if and only if frac(va(x)) = 0.

—wn(y)]
— ()| > cand |va(z) — v2(y)| > c.

frac(vi(z) — 1 (y)) = 0if and only if frac(va(z) — 12 (y)) = 0.

Distinguishing Clock Valuations: Two Clocks / men

P

e X={oyhe=lc =1
94>1

£ O 7
. o»flﬂ]x&é : 1755

Example: Regions | () vz e X e [n(@)] = (@) V (1 () > ez Aa(a) > cz)
(2) Vo e Xow(x) < e, = (frac(i(x)) =0 <= frac(va(z)) = 0)

Yo,y € X e lni(z) —n(y)] = [ra(z) —r2(y)]

V (@) — 1 (@) > e A fa(x) — 1a()| > ©)
) Va,yeXo—c<n) —wmy) <c
= (frac(ni(z) —11(y)) =0 = frac(rz(z) - v2(y)) = 0)

v v1 2 v because
¢ @) =11 =1=1] = [»()]
L(y)] = 108] =0=10.4] = [v2(y)]

o frac(v () = 0 = frac(vz(x))
C(rme0s)  rac((v) = Jroc(08) =08 %0

< frac(va(y)) = frac(0.4) = 0.4 £ 0
TS ) - = -0 =0
0 - =[1-04] = [v2(z) — 12(v)]
0 1
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Example: Regions | ) vz e X o |n(@)] = [v2(2)] V (4(2) > ex Ava(a) > c2)
(2) Ve Xown(x) <e. = (frac(ni(x)) =0 <= frac(vz(z)) =0)

(3) Va,y € X o () — ()] = lva(z) —1a(v)]
V(@) = 21 (y)] > e A fa(e) = va(y)] > )
(4) Yo,y e Xo—c<n(x)-ny) <c
= (frac((z) —11(y)) =0 <= frac(va(z) - va(y)) = 0)

1 = v, because v2 % v because

s @l === =m@)] e @) =1]=1
)] = 08 =0=104] = ma(y)] @] =107 =0

1 o frac(v(@)) = 0 = frac(va(x))
frac(uy(y)) = frac(0.8) = 0.8 # 0
Jrac(va(y)) = frac(0.4) = 0.4 # 0

o (@) -wn@)=[1-08/=0
=[1-04] = |v2(z) — 12(y)]

=)
4$05) =at)
=

: 2053

press?

Example: Region Automaton

F&)

ht, [z = 1.0]) 2= ..

= (bright. [z 0] B
22 (light, [« = 0]) E&IQWD
s

(off, [r = 0)) 255 .

(off, [z = 2.9]) 2<%

press

S (off, [o = 3.0)) &= ...
w@ {off, [z = 3.001]) =

2355

Regions

Definition 4.27.
For a given valuation  we denote by [1/] the equivalence class of v.

We call the equivalence classes of =~ _.mm_osm.

Remark

Remark 4.30. A configuration (¢, [v]) is reachable in R (.A)
ifand only if all (£, 2') with " € [v] are reachable.

In other words: it is possible to enter the configuration (¢, ')
with an action transition (possibly some delay before).

The clock values reachable by staying / letting time pass in £ are
not explicitly represented by the regions of R(A).

24535

The Region Automaton

on 4.29. [Region Automaton] The region automaton R(.A) of the
timed automaton A is the labelled transition system

R(A) = ( Conf(R(A)), Bn, {<+r)| @€ Bn}, Cini)

where
o Conf(R(A)) = {(¢,[v]) | L€ L,v: X — Time,v = I({)},
« foreacha € By, =

= reay (€, [V]) if and only if (¢, v) == (¢, /)

inU(A),and

® Cini = {{lini,

inil)} 0 Conf (R(A)) with vini (X) = {0}

Proposition. The transition relation of R(A) is well-defined, that s, inde-
pendent of the choice of the representative v of a region [v/].

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

.\,\ Observe: clock constraints are simple
- w.log assume constants c € No.
Def. 4.19: time-abstract transition system
U(A) - abstracts from uncountably many
delay transitions, still infinite-state.

¢ Lemma 4.20: location reachability

of Ais preserved in U(A).

(¢ Def. 4.29: region automaton R(A) -
equivalent configurations collapse into regions

X Lemma 4.32: location reachability
of U(A) is preserved in R(A).

X Lemma 4.28: R(A) s f




Region Automaton Properties

Lemma 4.32. [Correctness]
For all locations £ of a given timed automaton A the following holds:

Lis reachable in 2/(A) if and only if £ is reachable in R(A).

c=>c

=340

For the Proof: :
o LDren A

Definition 4.21. [Bisimulation] An equivalence relation ~ on valuations is
a (strong) bisimulation if and only if, wk

v ~vpand (£,) == (¢, v])

then there exists v4 with 1| ~ v4 and (£, 1) == (', v}).

Lemma 4.26. [Bisimulation] = is a strong

The Number of Regions

Lemma 4.28. Let X be a set of clocks, ¢, € IN; the maximal constant for
eachz € X, and ¢ = max{c, | # € X}. Then

(@c+2)IX1. (de + 3)HXI0XI=)

is an upper bound on the number of regions.

Proof: Olderog and Dierks (2008)

« Lemma 4.28 in particular tells us that each timed automaton (in our definition)
has finitely many regions.

« Note: the upper bound is a worst case / upper bound, not an exact number.

26735
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Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

v Observe: clock constraints are simple
- w.lo.g assume constants ¢ € INp.

v Def. 4.19: time-abstract transition system
U(A) - abstracts from uncountably many
delay transitions, still infinite-state.

<

Lemma 4.20: location reachability
of Ais preserved in U(A).

V' Def. 4.29: region automaton R(A) -
equivalent configurations collapse into regions

<

Lemma 4.32: location reachability
of U(A) s preserved in R(A).

Lemma 4.28: R(A) i finite.

x
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Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

v Observe: clock constraints are simple
- wlo.g assume constants ¢ € INo.

v Def. 4.19: time-abstract transition system
U(A) - abstracts from uncountably many
delay transitions, still infinite-state.

<

Lemma 4.20: location reachability
of Ais preserved in U(A).

Def. 4.29: region automaton R(A) -
equivalent configurations collapse into regions

Lemma 4.32: location reachability
of U(A) i preserved in R (A).

Lemma 4.28: R(A) is i

<

<

<
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The Number of Regions

Lemma 4.28. Let X be a set of clocks, ¢, € Ny the maximal constant for
eachz € X,and ¢ = max{c, | « € X}. Then
(2c+2)X1 - (4 + 3)31X10XI-1)
o -
is an upper bound on the number of regions. ~ ®

Proof: Olderog and Dierks (2008)
Cof (RA) = /x Valf,
e

@\@E
(VAR

2835

Putting It All Together

Let A= (L,B,X.I,E,{;,)beatimed automaton and ¢ € L a location.
* R(A) can be constructed effectively.

© There are finitely many locations in L (by definition).

o There are finitely many regions by Lemma 4.28.

« So Conf(R(A))is finite by construction).

o Itis decidable whether there exists a sequence
(Linis Wini]) = reay (s 1)) S peay - S rea) (o )
such that £, = ¢ (reachability in graphs).

Thus we have just shown:

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.

3053



The Constraint Reachability Problem E

« Given: Timed automaton A, one of its locations ¢, and a clock constraint .
* Question: Is a configuration (¢, v) reachable

where v |= ¢, i.e. is there a transition sequence of the form

(Linis Vins) 25 (b,1) 25 (G, 00) 25 022 (0, 0) = (0)

in the labelled transition system 7 (A) with v |= ©?

« Note: we just observed that R(.A) loses some information about the clock
valuations that are possible in / from a region.

Theorem 4.34.
The constraint reachability problem for timed automata is decidable.

References
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The Delay Operation

o Let [v] be a clock region.
o Weset delay[v] := {v/ +t| v = vandt € Time}.
-

0 x
0 1

» Note: delay[v] can be represented as a finite union of regions.
For example, with our two-clock example we have

References

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press
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Tell Them What You've Told Them. ..

is location £ reachable in A?

« Decidability proof: LAD7¢ ]
« normalise constants,

« construct the Time Abstract Transi

« “getrid of " delay transitions,
o stilluncountably many configurations

 obtain finitely many (abstract) configurations

« construct the Region Automaton
o itisfinite,,/

© and preserves location reachability. £cn... 223

« Thus: there are chances to get automatic verification for TA.

« Result can easily be lifted to constraint reachability.



