Real-Time Systems

Lecture 13: Location Reachability

Duration Calculus (DC)
 Semantical Correctness Proofs
 DC Decidability
 DC Implementables

* Timed Automata (TA), Uppaal
Networks of Timed Automata
* Region/Tope_Abstracting, /c
* TA model-checking
* Extended Timed Automata
* Undecidability Results
* Undecidability Results

PLC-Automata

 $obs:\mathsf{Time} \to \mathscr{D}(obs)$

 $\langle obs_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_0} \langle obs_1, \nu_1 \rangle, t_1 \dots$

 Observables and Evolutions Introduction Content

(or: The Region Automaton)

2017-12-14

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

The Location Reachability Problem

4/35

The Location Reachability Problem

Given: A timed automaton $\mathcal A$ and one of its locations $\ell.$ Question: Is ℓ reachable?

That is, is there a transition sequence of the form

 $\langle \ell_{ini}, \nu_0 \rangle \xrightarrow{\lambda_i} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle \text{ with } \underbrace{\ell_n = \ell}_{\ell_n}$

in the labelled transition system $\mathcal{T}(\mathcal{A})$?

- Note: Decidability is not soo obvious, recall that
- clocks range over real numbers, thus infinitely many configurations,
- at each configuration, uncountably many transitions $\stackrel{f}{\rightarrow}$ may originate

Consequence: The timed automata as we consider them here cannot encode a 2-counter machine, and they are strictly less expressive than DC.

Content

The Location Reachability Problem
...is decidable for TA:
-(* Normalised Constants
-(* Time Abstract Transition System
-(* Time Abstract e ...is finite

...a..and effectively constructable. Regions:

• The Constraint Reachability Problem

Decidability of Location Reachability for TA

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

Approach: Constructive proof.

The location reachability problem is decidable for timed automata

- Observe: clock constraints are simple w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ abstracts from uncountably many delay transitions, still infinite-state.
- Lemma 4.20: location reachability of \mathcal{A} is preserved in $\mathcal{U}(\mathcal{A})$.
- Def. 4.29: region automaton $\mathcal{R}(\mathcal{A})$ = equivalent configurations collapse into regions
- Lemma 4.32: location reachability of $\mathcal{U}(\mathcal{A})$ is preserved in $\mathcal{R}(\mathcal{A})$.

• Lemma 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

Without Loss of Generality: Natural Constants

- $\bullet \ \, \text{Let} \ \, C(\mathcal{A}) = \{c \in \mathbb{Q}_0^+ \mid c \text{ appears in } \mathcal{A}\} \ \, \ \, C(\mathcal{A}) \text{ is finite! (Why?)} \\ \bullet \ \, \text{Let} \ \, t_{\mathcal{A}} \text{ be the least common multiple of the denominators in } C(\mathcal{A}). \\ \bullet \ \, \text{Let} \ \, t_{\mathcal{A}} \cdot \mathcal{A} \text{ be the TA obtained from } \mathcal{A} \text{ by multiplying all constants by } t_{\mathcal{A}}. \\$

Without Loss of Generality: Natural Constants

• Let $C(A) = \{c \in \mathbb{Q}_0^+ \mid c \text{ appears in } A\} - C(A) \text{ is finite! (Why?)}$ • Let t_A be the least common multiple of the denominators in C(A).
• Let $t_A \cdot A$ be the TA obtained from A by multiplying all constants by $t_A \cdot A$.

Without Loss of Generality: Natural Constants

- $\begin{tabular}{ll} & \textbf{et } C(\mathcal{A}) = \{c \in \mathbb{Q}_0^+ \mid c \text{ appears in } \mathcal{A}\} & C(\mathcal{A}) \text{ is finite! } (\mathbb{W}hy?) \\ & \textbf{et } t_{\mathcal{A}} \text{ be the least common multiple of the denominators in } C(\mathcal{A}). \\ & \textbf{et } t_{\mathcal{A}} \cdot \mathcal{A} \text{ be the TA obtained from } \mathcal{A} \text{ by multiplying all constants by } t_{\mathcal{A}}. \\ \end{aligned}$
- C(t_A · A) ⊂ N₀.
- A location ℓ is reachable in $t_{\mathcal{A}}\cdot\mathcal{A}$ if and only if ℓ is reachable in \mathcal{A} .
- \bullet That is: we can, without loss of generality, in the following consider only timed automata ${\cal A}$ with $C({\cal A})\subset N_0.$

 $\begin{array}{cccccc} \mathcal{A}; & & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

We denote by $g_x\in \mathbb{N}_0$ the largest time constant c that appears together with x in a constraint of A. Definition. Let x be a clock of timed automaton \mathcal{A} (with $C(\mathcal{A}) \subset \mathbb{N}_0$).

Without Loss of Generality: Natural Constants

- $\bullet \ \ \text{Let} \ C(\mathcal{A}) = \{c \in \mathbb{Q}_0^+ \mid c \ \text{appears in } \mathcal{A}\} \ C(\mathcal{A}) \ \text{is finite! (Vhy?)} \\ \bullet \ \ \text{Let} \ t_{\mathcal{A}} \ \text{be the least common multiple of the denominators in } C(\mathcal{A}).$
- Let $t_{\mathcal{A}}\cdot\mathcal{A}$ be the TA obtained from \mathcal{A} by multiplying all constants by $t_{\mathcal{A}}$.

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata

Approach: Constructive proof.

- Observe: clock constraints are simple w.l.o.g. assume constants $c \in \mathbb{N}_0$. ★ Def. 4.19: time-abstract transition system U(A) – abstracts from uncountably many delay transitions, still infinite-state.
- ★ Lemma 4.20: location reachability of A is preserved in U(A).
- **X** Def. 4.29: region automaton $\mathcal{R}(A)$ equivalent configurations collapse into regions
- **x** Lemma 4.32: location reachability of $\mathcal{U}(\mathcal{A})$ is preserved in $\mathcal{R}(\mathcal{A})$.
- x Lemma 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

Helper: Relational Composition

$\textbf{Recall: } \mathcal{T}(\mathcal{A}) = (Conf(\mathcal{A}), \mathsf{Time} \cup B_{?!}, \{ \xrightarrow{\Delta} \mid \lambda \in \mathsf{Time} \cup B_{?!} \}, C_{ini})$

• Note: The $\xrightarrow{\lambda}$ are binary relations on configurations. $C_{a} \circ C_{b} \circ C$

Definition. Let $\mathcal A$ be a TA. For all $\langle \ell_1, \nu_1 \rangle$, $\langle \ell_2, \nu_2 \rangle \in Conf(\mathcal A)$. $\langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_1} \circ \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle$

if and only if there exists some $\langle \ell', \nu' \rangle \in \mathit{Conf}(\mathcal{A})$ such that

 $(\ell_1, \nu_1) \xrightarrow{\lambda_1} \langle \ell', \nu' \rangle \text{ and } \langle \ell', \nu' \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle.$

Remark. The following property of time additivity holds. $\forall \, t_1, t_2 \in \mathsf{Time} : \xrightarrow{t_1} \circ \xrightarrow{t_2} \; = \; \xrightarrow{t_1 + t_2}$

Location Reachability is preserved in $\mathcal{U}(\mathcal{A})$

Lemma 4.20. For all locations ℓ of a given timed automaton $\mathcal A$ the following hdds:

 ℓ is $(\stackrel{\rightharpoonup}{\to}$ -)reachable in $\mathcal{T}(\mathcal{A})$ if and only if ℓ is $(\stackrel{r}{\Longrightarrow}$ -)reachable in $\mathcal{U}(\mathcal{A})$.

 $\bullet \ \ \stackrel{\circ}{\longrightarrow} \ \stackrel{\circ}{\longrightarrow}$

 $\xrightarrow{t_{m_1}} \langle \ell_{m_1}, \nu_{m_1} \rangle \xrightarrow{t_{m_2}} \cdots$

13/35

Time-abstract Transition System

The time-abstract transition system $\mathcal{U}(\mathcal{A})$ is obtained from $\mathcal{T}(\mathcal{A})$ (Def. 4.4) by taking Let \mathcal{A} be a timed automaton. Definition 4.19. [Time-abstract transition system]

 $\mathcal{U}(\mathcal{A}) = (Conf(\mathcal{A}), B_{?!}, \{ \stackrel{\alpha}{\Longrightarrow} | \alpha \in B_{?!} \}, C_{ini})$

 $\Longrightarrow \subseteq Conf(A) \times Conf(A)$

is defined as follows: Let $\langle \ell, \nu \rangle$, $\langle \ell', \nu' \rangle \in Conf(A)$ be configurations of A and $\alpha \in B_{?!}$ an action. Then

if and only if there exists $t \in \overline{T}$ ime such that $(\ell, \nu) \xrightarrow{t} \circ \xrightarrow{t} (\ell', \nu')$.

Location Reachability is preserved in $\mathcal{U}(\mathcal{A})$

Lemma 4.20. For all locations ℓ of a given timed automaton $\mathcal A$ the following holds:

ℓ is $(\stackrel{\rightarrow}{\to}$ -)reachable in $\mathcal{T}(\mathcal{A})$ if and only if ℓ is $(\stackrel{\Longrightarrow}{\Longrightarrow}$ -)reachable in $\mathcal{U}(\mathcal{A})$.

• "←=": easy • " \Longrightarrow ": ℓ is reachable in $\mathcal{T}(A)$ • $\underbrace{t_1 := \sum_{i=1}^{n_0} t_0}_{\ell}$ $\xrightarrow{t_{m_1}} \langle \ell_{m_1}, \nu_{m_1} \rangle \xrightarrow{t_{m_2}} \cdots$ $\ell_{0_{n_0}}, \nu_{0n_0}$ $\xrightarrow{\alpha_1}$ (ℓ_1, ν_1) $\xrightarrow{\alpha_2}$ (ℓ_2, ν_2)

 $\mathsf{implies}\,\langle\ell_0,\nu_0\rangle \overset{\alpha_1}{\Longrightarrow} \langle\ell_1,\nu_1\rangle \overset{\alpha_2}{\Longrightarrow} \dots \overset{\alpha_{m+1}}{\Longrightarrow} \langle\ell,\nu_{m+1}\rangle$

13/35

Example

$\langle \ell, \nu \rangle \stackrel{\alpha}{\Longrightarrow} \langle \ell', \nu' \rangle \text{ iff } \exists \, t \in \mathsf{Time} \bullet \langle \ell, \nu \rangle \stackrel{t}{\hookrightarrow} \circ \stackrel{\alpha}{\Longrightarrow} \langle \ell', \nu' \rangle$

 $\bullet \ \ \langle \textit{light}, x=0 \rangle \xrightarrow{prost_{i}} \langle \textit{off}, x=27 \rangle \quad \text{YES, with } i=27 \text{ we have } (i,0) \xrightarrow{27, (i,27)} \xrightarrow{prost_{i}} (o,27)$

 $\bullet \ \left< \textit{off}, x = 4 \right> \stackrel{press?}{\Longrightarrow} \left< \textit{light}, x = 0 \right> \qquad \text{YES, any } t \in \mathbb{R}_0^+ \text{ works}$

 $\bullet \ \, \langle \textit{off}, x=4 \rangle \stackrel{press?}{\Longrightarrow} \langle \textit{light}, x=1 \rangle \qquad \text{NO.} \, \langle \textit{o}, 4 \rangle \stackrel{t}{\longrightarrow} \circ \stackrel{press?}{\Longrightarrow} \langle \textit{l}, t' \rangle \, \text{implies} \, t'=0$

 $\bullet \ \, \langle \textit{off}, x=0 \rangle \stackrel{press?}{\Longrightarrow} \langle \stackrel{\bullet}{\not \bowtie} | (x=5) \rangle \qquad \text{NO. no } \alpha \, \text{s.t.} \, \langle \mathfrak{o}, 5 \rangle \stackrel{\alpha}{\Longrightarrow} \langle \mathfrak{o}, 5 \rangle$

 $\bullet \ \langle \textit{off}, x=0
angle \stackrel{press?}{\Longrightarrow} \langle \textit{bright}, x=5
angle$. NO, needs two actions

• $\langle \textit{light}, x = 1 \rangle \stackrel{press?}{\Longrightarrow} \langle \textit{bright}, x = 1 \rangle$ YES, with t = 0

12/35

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata

✓ Observe: clock constraints are simple – w.l.o.g. assume constants $c \in \mathbb{N}_0$. Approach: Constructive proof.

V Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ – abstracts from uncountably many delay transitions, still infinite-state.

Verma 4.20: location reachability of \mathcal{A} is preserved in $\mathcal{U}(\mathcal{A})$.

- **X** Def. 4.29: region automaton $\mathcal{R}(A)$ equivalent configurations collapse into regions
- Lemma 4.32: location reachability of U(A) is preserved in R(A).
 Lemma 4.28: R(A) is finite.

Helper: Floor and Fraction

- $\begin{array}{l} \bullet \ \ \text{floor} \ [q] \in N_0 \ \ \text{and} \\ \bullet \ \ \ \text{fraction} \ \ frac(q) \in [0,1) \end{array}$ Each $q \in \mathbb{R}^+_0$ can be split into $q = \lfloor q \rfloor + frac(q).$

100 (3.14) = 3

18/35

Where $c = \max\{c_x, c_y\}$.

An Equivalence-Relation on Valuations

(3) For all x, y ∈ X. (2) For all $x \in X$ with $\nu_1(x) \le c_x$. (4) For all $x, y \in X$ with $-c \le \nu_1(x) - \nu_1(y) \le c$. (1) For all $x\in X$, $\lfloor \nu_1(x)\rfloor=\lfloor \nu_2(x)\rfloor$ or both $\nu_1(x)>c_x$ and $\nu_2(x)>c_x$. Definition. Let X be a set of clocks $c_x\in\mathbb{N}_0$ for each clock $x\in X,$ and ν_1,ν_2 clock valuations of X.We set $\nu_1\cong\nu_2$ if and only if the following four conditions are satisfied: $\operatorname{frac}(\nu_1(x)-\nu_1(y))=0 \text{ if and only if } \operatorname{frac}(\nu_2(x)-\nu_2(y))=0.$
$$\begin{split} &[\nu_1(x)-\nu_1(y)]=[\nu_2(x)-\nu_2(y)]\\ \text{or both } &|\nu_1(x)-\nu_1(y)|>c \text{ and } |\nu_2(x)-\nu_2(y)|>c. \end{split}$$
 $frac(\nu_1(x))=0$ if and only if $frac(\nu_2(x))=0$.

Distinguishing Clock Valuations: One Clock

 $\label{eq:lambda} \begin{array}{ll} \mathcal{A} \mbox{ cannot distinguish } \nu_1 \mbox{ and } \nu_2 \\ \mbox{if } \nu_i(x) > c_x, \, i=1,2. \end{array}$

If $\nu_1(x)$ and $\nu_2(x)$ are in the same equivalence class, then ν_1 and ν_2 are indistiguishable by $\mathcal A.$

 $\{\{0\}, (0,1), \{1\}, (1,2), \dots, \{c_x\}, (c_x, \infty)\}$

• If $c_x \geq 1$, there are $(2c_x+2)$ equivalence classes:

17/35

20/35

We call the equivalence classes of \cong regions. Definition 4.27. For a given valuation ν we denote by $[\nu]$ the equivalence class of ν . Proposition. ≅ is an equivalence relation.

 $\bullet \ Conf(\mathcal{R}(\mathcal{A})) = \{ \langle \ell, [\nu] \rangle \mid \ell \in L, \nu : X \to \mathsf{Time}, \nu \models I(\ell) \}.$ $\bullet \ \text{for each } \alpha \in B_{?!},$

 $\underbrace{\langle \ell, [\nu] \rangle} \xrightarrow{\hookrightarrow}_{R(\mathcal{A})} \underbrace{\langle \ell', [\nu'] \rangle}_{} \text{ if and only if } \langle \ell, \nu \rangle \xrightarrow{\Longrightarrow} \langle \ell', \nu' \rangle$

Regions

The Region Automaton

Definition 4.29. [Region Automaton] The region automaton $\mathcal{R}(\mathcal{A})$ of the timed automaton \mathcal{A} is the labelled transition system

 $\mathcal{R}(\mathcal{A}) = (\ Conf(\mathcal{R}(\mathcal{A})),\ B_{\mathcal{H}},\ \{ \stackrel{\alpha}{\longrightarrow}_{R(\mathcal{A})} |\ \alpha \in B_{\mathcal{H}} \},\ C_{ini}\)$

Proposition. The transition relation of $\mathcal{R}(\mathcal{A})$ is well-defined, that is, independent of the choice of the representative ν of a region $[\nu]$.

22/35

• $C_{ini} = \{\langle \ell_{ini}, [\nu_{ini}] \rangle\} \cap Conf(\mathcal{R}(\mathcal{A})) \text{ with } \nu_{ini}(X) = \{0\}.$

in $\mathcal{U}(\mathcal{A})$, and

Decidability of The Location Reachability Problem

Remark

Remark 4.30. A configuration $\{\ell, [\nu]\}$ is reachable in $\mathcal{R}(\mathcal{A})$ if and only if all $\{\ell, \nu'\}$ with $\nu' \in [\nu]$ are reachable.

not explicitly represented by the regions of $\mathcal{R}(\mathcal{A})$. The clock values reachable by staying / letting time pass in ℓ are with an action transition (possibly some delay before). In other words: it is possible to enter the configuration $\langle \ell, \nu' \rangle$

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

```
\checkmark Lemma 4.20: location reachability of \mathcal{A} is preserved in \mathcal{U}(\mathcal{A}).
                                                                                                                                                                                                                                                                                                                                                                ✓ Def. 4.19: time-abstract transition system \mathcal{U}(\mathcal{A}) – abstracts from uncountably many delay transitions, still infinite-state.

    Lemma 4.32: location reachability of U(A) is preserved in R(A).
    Lemma 4.28: R(A) is finite.

                                                                                                                                                                \text{ $\bigvee$ $ \text{Def. 4.29: region automaton } \mathcal{R}(A) - $$ equivalent configurations collapse into regions } 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \checkmark Observe: clock constraints are simple – w.l.o.g. assume constants c \in \mathbb{N}_0.
```

24/35

23/35

Region Automaton Properties

```
For the Proof:
                                                                                                                                                   Lemma 4.32. [Correctness] For all locations \ell of a given timed automaton \mathcal A the following holds:
                                                                                                        \ell is reachable in \mathcal{U}(\mathcal{A}) if and only if \ell is reachable in \mathcal{R}(\mathcal{A}).
2 C. 2 RAI 2.
```

Definition 4.21. [Bisimulation] An equivalence relation \sim on valuations is a (strong) bisimulation if and only if, whenever

 $\nu_1 \sim \nu_2 \text{ and } \langle \ell, \nu_1 \rangle \stackrel{\alpha}{\Longrightarrow} \langle \ell', \nu_1' \rangle$

then there exists ν_2' with $\nu_1' \sim \nu_2'$ and $\langle \ell, \nu_2 \rangle \stackrel{\text{def}}{\Longrightarrow} \langle \ell', \nu_2' \rangle$.

Lemma 4.26. [Bisimulation] \cong is a strong bisimulation

26/35

The Number of Regions

```
is an upper bound on the number of regions.
                                                                                                                                                                          Lemma 4.28. Let X be a set of clocks, c_x\in\mathbb{N}_0 the maximal constant for each x\in X , and c=\max\{c_x\mid x\in X\} . Then
                                                                                     (2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X|\cdot (|X|-1)}
```

Proof: Olderog and Dierks (2008)

- Lemma 4.28 in particular tells us that each timed automaton (in our definition) has finitely many regions.
- Note: the upper bound is a worst case / upper bound, not an exact number.

28/35

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

```
\checkmark Observe: clock constraints are simple – w.lo.g. assume constants c \in \mathbb{N}_0.
                                                                                    Approach: Constructive proof.
```

✓ Def. 4.19: time-abstract transition system U(A) – abstracts from uncountably many delay transitions, still infinite-state.

✓ Lemma 4.20: location reachability of A is preserved in U(A).

 \checkmark Def. 4.29: region automaton $\Re(A)$ − equivalent configurations collapse into regions

 \checkmark Lemma 4.32: location reachability of $\mathcal{U}(\mathcal{A})$ is preserved in $\mathcal{R}(\mathcal{A})$.

 X Lemma 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata

```
\checkmark Def. 4.29: region automaton \Re(A) − equivalent configurations collapse into regions
                                                                                             ✓ Lemma 4.20: location reachability of \mathcal{A} is preserved in \mathcal{U}(\mathcal{A}).
                                                                                                                                                                                     ✓ Def. 4.19: time-abstract transition system \mathcal{U}(A) – abstracts from uncountably many delay transitions, still infinite-state.
                                                                                                                                                                                                                                                                                                                 \checkmark Observe: clock constraints are simple – w.lo.g. assume constants c \in \mathbb{N}_0.
                                                                                                                                                                                                                                                                                                                                                                                                         Approach: Constructive proof.
```

✓ Lemma 4.32: location reachability of U(A) is preserved in R(A).
 ✓ Lemma 4.28: R(A) is finite.

29/35

The Number of Regions

```
Lemma 4.28. Let X be a set of clocks, c_x\in \mathbf{N}_0 the maximal constant for each x\in X, and c=\max\{c_x\mid x\in X\}. Then
is an upper bound on the number of regions.
                                                                          (2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X| \cdot (|X|-1)}
```

Proof: Olderog and Dierks (2008)

1717

28/35

Putting It All Together

Let $\mathcal{A}=(L,B,X,I,E,\ell_{ini})$ be a timed automaton and $\ell\in L$ a location.

• $\mathcal{R}(\mathcal{A})$ can be constructed effectively.

There are finitely many locations in L (by definition).

There are finitely many regions by Lemma 4.28.

So Conf(R(A)) is finite (by construction).

It is decidable whether there exists a sequence

 $\langle \ell_{ini}, [\nu_{ini}] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_1, [\nu_1] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \dots \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_n, [\nu_n] \rangle$

such that $\ell_n=\ell$ (reachability in graphs).

Thus we have just shown:

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.

The Constraint Reachability Problem (Laydox x-23)

• Given: Timed automaton $\mathcal A$, one of its locations ℓ , and a dock constraint φ .
• Question: Is a configuration $\langle \ell, \nu \rangle$ reachable where $\nu \models \varphi$, i.e. is there a transition sequence of the form

in the labelled transition system $\mathcal{T}(\mathcal{A})$ with $\nu \models \varphi$? $\langle \ell_{ini}, \nu_{ini} \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle = \langle \ell, \nu \rangle$

• Note: we just observed that $\mathcal{R}(\mathcal{A})$ loses some information about the clock valuations that are possible in / from a region.

Theorem 4.34. The constraint reachability problem for timed automata is decidable.

31/35

References

Olderog, E.-R. and Dierks, H. (2008). Red-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

References

34/35

35/35

The Delay Operation

- Let $[\nu]$ be a clock region. We set $delay[\nu] := \{\nu' + t \mid \nu' \cong \nu \text{ and } t \in \mathsf{Time}\}.$

• Note: $delay[\nu]$ can be represented as a finite union of regions. For example, with our two-clock example we have

delay[x = y = 0] = [

normalise constants,
 construct the Time Abstract Transition System
 "get rid of" delay transitions,
 still uncountably many configurations

 Decidability proof: ∠AD74] (44)• Location Reachable Problem: is location ℓ reachable in \mathcal{A} ?

Tell Them What You've Told Them...

- collapse equivalent clock valuations integions
 obtain finitely many (abstract) configurations
- construct the Region Automaton
 it is finite.
- st and preserves location reachability. Fig. . $\mathcal{U}(\mathcal{A})$

 Result can easily be lifted to constraint reachability. Thus: there are chances to get automatic verification for TA.

33/35