Duration Calculus: Preview

ion Calculus is an interval logic.

o Dur:

« Formulae are evaluated in an
(implicitly given) interval.

© G.F.IH:{0,
o Define L : {0,1°

Strangest operators ya [%1

o almost everywhere - Example: [G]
(Holds in a given interval [,] iff the gas valve is open almost everywhere)

o ==

o chop - Example: ([~1]; [I];[~I]) = ¢>1 T, |
Ignition phases last at least one time unit LT, o7
ot G 2>

o integral - Example: (> 60 = [L <
(At most 5% leakage time within intervals of at least 60 time units.)

Real-Time Systems

Lecture 5: Duration Calculus
2017-11-09

Dr. Bernd Westphal

Albert-Ludwigs-Universitét Freiburg, Germany

Content

Semantics-based Correctness Proofs
|~ Example: Gas Burner Controller

{~e Theorem 2.16: Des-1 and Des-2

is a correct design wrt. Req

Lemma 2.19: Des-1 and Des-2

imply a simplified requirement Req-1
|-<e Some Laws of the DC Integral Operator

L(e Lemma 2.17: Req-1 implies Req

Obstacles (in a Non-ldeal World)

{~e requirements may be unrealisable
without considering plant assumptions
{~e intermediate design levels

t—e different observables

e proving correctness may be difficult

o If time permits:
A Calculus for DC

Content

Introduction

« Observables and Evolutions » Timed Automata (TA), Uppa:
* Networks of Timed Automat:
« Region/Zone-Abstraction

« TA model-checking
 Extended Timed Automata
* Undecidability Results

Duration Calculus (DC).”
Semantical Correctness Proofs S~
DC Decidability §/7

« DC Implementables

PLC-Automata

obs : Time — Z(obs) (0bso, v0), to =2 (obsy, v

* Automatic Verification...
..whether a TA satisfies a DC formula, observer-based
© Recent Results:

imed Sequence Diagrams, or Quasi-equal Clocks,
or Automatic Code Generation, or ..

Methodology (in an ideal world)

In order to prove a controller design correct wrt. a specification:

(i) Choose observables ‘Obs.

(i) Formalise the requirements ‘Req’
as a conjunction of DC formulae (over ‘Obs).

Formalise a controller design ‘Ctrl’
as a conjunction of DC formulae (over ‘Obs).

(iv) We say ‘Ctrl'is correct (wrt. ‘Req’) iff
o Ctrl = Req,

50 “just” prove |=¢ Ctrl = Req.

Specification and Semantics-based Correctness i
of Real-Time Systems with DC

Gas Burner Revisited

(i) Choose observables:
o F:{0,1}: value 1 models “flame sensed now” (input)
o G :{0,1}: value 1 models “gas valve is open now” (output)
o define L := G A —F to model leakage

(i

Formalise the requirement:
Req:=0((> 60 = 20-[L < ()

in each interval of length at least 60 time units, at most 5% of the tim

Formalise controller design ideas:
o Des-1:=0([L] = (<1)
“make leakage phases last for at most one time unit”
o Des-2:=0([L]; [-L]; [L] = £>30)
“ensure: non-leakage phases between two leakage phases last at lez
(iv) Prove correctness, i.e. prove |= (Des-1 A Des-2 = Req).
(Or do we want “="..7)

Gas Burner Revisited

(i) Choose observables:
o F:{0,1}: value 1 models “flame sensed now” (input)
o G :{0,1}: value 1 models “gas valve is open now” (output)
o define L := G A —F to model leakage

(i

Formalise the requirement:
Req:=0((> 60 = 20-[L < ()

in each interval of length at least 60 time units, at most 5% of the tim

Formalise controller design ideas:
o Des-1:=0([L] = (<1)
“make leakage phases last for at most one time unit”

o Des-2:=0([L]; [-L];[L] = £>30)

U

Lemma 2.17

Cl

EO(<30 = [L<1) = O(¢>60 = 20-[L

Req-1 Req

Proof:
o Assume that ‘Req-1" holds.
o Let Lz be any interpretation of L, and [b, ¢] an interval with e — b >

» We need to show that
20-[L<t

evaluates to ‘tt’ on interval [b, €] under interpretation Z (and any vi
* We have
Z[20- [L < L)(V, [bye]) = tt

<= (by DC semantics)

20 ¢ \m Lz(t) dt < (e —b)
b

A Correct Gas Burner Controller Design

Req:=0(¢>60 = 20-[L </{)
Des-1:=0([L] = ¢<1), Des-2:=0([L];[~L];[L] =

« A controller for the gas burner which guarantees Des-1 and Des-1 is corre

= (Des-1 A Des-2 = Req)

(shown in Theorem 2.16)

« We do prove (in Lemma 2.19)

I (Des-1 A Des-2) Hv@

for the the simplified requirement

Req-1:= (£ < 30 JL<1).
(“intervals of length at most 30 time units have/At most 1 time unit of acci

* Showing
Req

(in Lemma 2.17) completes the overall proof.

Lemma 2.17 Cont’d

Lemma 2.17 Cont’d

*)
o Setn:=[%L] leneNwithn—1< % <n,
and split the interval as follows:

b+ 30- b+ 30-

b+30 b+ 60 (n—2) (n—1)
| | | | |
T T 1 T T

mo.\sNS d
b
m=2 b430(i+1) e
HNOAM\ Lz(t) %+\ Lz(t
i=0 /b

+30i b+30(n—1)
n-2
{Req-1} <20- > 1+20-1=20-n
i=0
2
{(5)} <20- A 0 tv == +20

fe—b>60} <e—b

o Setn =[], ie.n € Nwithn— 1<
and split the interval as follows:

b+30 b+ 60 (n—2) (n—1)

mo.\sNS dat
b
n=2 b430(i+1) e
HNOA \ Lo(t) &+\ Lo
b-

Sodersoi L Jesom-y
1

{Req-1} M@O.WLQ%O.CK

=0

)= (P =m1)i(J P=r2)
(ME[= [P=0.

Lemma 2.19

n—N_an Des-1 Des-2

=@ = \mc>w:E"TEHE — (>30)) = O(<:
—_—

Proof:
£ <30
{Des-2} =]
VL ([TVI-L]) — o
V=L (TVIL])
V=L L] [-L] i

Some Laws of the DC Integral Operator

Theorem 2.18.
For all state assertions P and all real numbers 1,7 € R,

) =rpP<e

i) E(UP=r): (7 P=ra)) = (I P =1 +72)
= [-P] = [P=0,

iv) £l = JP=0.

Lemma 2.19

ErpP<e
EUP=r)i(fP=mr2)
V=l = JP=0.

n—N_an Des-1 Des-2

E@(L = (<)AT(L] L] [L] = £>30)) = O <:

Proof:
£<30
{Des-2} =]
VLT ([TV [=L])
V=L ([T VL))
V[=LT; (LT3 [=L]
{Des-1} = T[]
V(1) ([TV[-L])
V=L ([Tv(e< D)
V[=L] (€ <1); L]
{0} = 1
V(L <1):(MVI-L])
V=L (VL <1)
VI=LT; (L <1)5[-L]

WE=rP<e
Lemma 2.19 E (P =r)i(/P=r2)
V=l = JP=0.
n—Nmﬂ:“ Des-1 Des-2

E @@L = (<)AT(L] L] [L] = £>30)) = O <:

Proof:

£ <30

{Des-2} =]
VLT ([TV [-L])
vV [-L1: (1 v L))
VI[=L] L] [-L]

{Des-1} = T[]
MG OGN
MEARGMGESY
V[=L]5(0<1)5 [L

Lemma 2.19 E (P =r)i(/P=r2)
EN = /P=0
n—mmﬂ:“ Des-1 Des-2
E@(L] = (<)AD(L]; [~L]: [L] = €>30)) = O <:
Proof:
0<30 -
(Des-2) — 1] {(iv), (i)} = [L=0
VLTS (v [=LT) V(L<1):(L
VST (v [E]) UL
V[=L]: [L]: [~ . VIL=0:(/L
{Des-1} =] (@} = fr=o0
V<5V L) vils o
VLl (v (< 1) vipe o
VL] (£ < 1) [~L] VIL<O0+1+
{0y =N
i V([L<1):([TV[=L])
V=L ([Tv (L 1))
VI[=L]:(JL<1)5[-L]
Lemma 2.19
- EN = /P=0
Claim: Des-1 Des-2
E@(L] = (<)AD(L]; [-L]: [L] = €>30)) = O <:
Proof:
<30
(Des2} — 1] {0, Gi)} = [L=0
VLTV LD s D
VI=LT; ([TV L)
vV [=L];[L); [-L]
{Des-1} =]
V(<) ([Tv [-LD)
V=L ([Tv (<)
VI[=L]: (0 < 1) (=L
{0y =N

VL1 ([TV[-L])
VISLT [TV (L 1)
VISL] (L <1);[-L]

Content

Semantics-based Correctness Proofs
|~ Example: Gas Burner Controller

\,-ﬂ:mcﬁmBN;@NUmmuww:Q Ummr.uw\
is a correct design wrt. Req

Des-1and Des-2

Obstacles (in a Non-ldeal World)

{~e requirements may be unrealisable
without considering plant assumptions

intermediate design levels
{~e different observables

e proving correctness may be difficult

o If time permits:

A Calculus for DC
)P <t E[-P
Lemma 2.19 E (P =r)i(/P=r2)
EN = /P=0.
n—Nmﬂ:“ Des-1 Des-2

E@(L = (<)AT(L] L] [L] = £>30)) = O <:

Proof:
<30 fL=0
{Des-2} =]
v v
VI=LT: ([T V [L]) <:\H:4..§h
V[=LT; (LT3 [=L] IL=0 ’
{Desrl} = 1 VIL<1+40
MG HUR R <\>Mo+H
V=L ([Tv (<) VIL<0+1+
VI[=L];(€<1);[-L] _ \hA_\

Wy = n
VL <D (NVI-L)
VLT (VL <)
V=L (f L <15 [-L]

Methodology: The World is Not Ideal...

(i) Choose a collection of observables ‘Obs.

(ii) Provide specification ‘Req’ (conjunction of DC formulae over ‘C

Provide a description ‘Ctrl’ of the controller (DC formula over ‘C
(iv) Prove ‘Ctrl' correct (wrt. ‘Req), i.e. prove |= Ctrl = Req.

That looks too simple to be practical.
Typical obstacles:
(i) It may be impossible to realise ‘Req’
if it doesn't consider properties of the plant.

(i) There are typically intermediate design levels between ‘Req anc

Req’and ‘Ctrl' may use different observables.

(iv) Proving validity of the implication is not trivial.

Obstacles in Non-Ideal World

(ii) Intermediate Design Levels

» Atop-down development approach may involve
* Req - specification/requirements
o Des - design
o Ctrl - implementation

Then correctness is established by proving validity of
Ctrl = Des

and
Des = Req

(and then concluding ‘Ctrl —> Req’ by transitivity).

Any preference on the order (of (1) and (2))?

(i) Assumptions As A Form of Plant Model

» Often the controller will (or can) operate correctly only under some

 Forinstance, with a level crossing

© we may assume an upper bound on the speed of approaching t
fast)
© we may assume that trains are not arbitrarily slow in the crossin

(otherwise wed need to close the gates arbitrari

(otherwise we cant make promises to the road traffic)

» We shall specify such assumptions as a DC formula ‘Asm’
on the input observables
and verify correctness of ‘Ctrl’ wrt. ‘Req’ by proving validity (from C

Ctrl A Asm = Req

« Shall we care whether ‘Asm’is satisfiable?

Obstacle (iv): How to Prove Correctness?

Main options:

» by hand on the basis of DC semantics (as demonstrated before),

o using proof rules from a calculus (— later),

» sometimes a general theorem may fit (e.g. cycle times of PLC autc

. ﬂm\mﬁwmﬁm as in Uppaal (— later).

(iii): Different Observables

« Assume, ‘Req’ uses more abstract observables Obs 4
and ‘Ctrl’ more concrete observables Obsc.

For instance:

© in Obs 4: only consider one gas valve, open or closed - (G : {0, -
© in Obsc: may consider two valves and intermediate positions,
for instance, to react to different heating requests - G; : {0, 1,2
« To prove correctness,
« we need information how the observables are related,
« an invariant which links the data values of Obs 4 and Obsc.

If we're given the linking invariant as a DC formula, say ‘Linkc 4, the
correctness of ‘Ctrl’ wrt. ‘Req” amounts to proving

f=o Ctrl A Linkc,.a = Req.

Forinstance, Linkc,a == [] V [G <= (G >0V Gy > 0)].

References

Tell Them What You’ve Told Them. ..

» Design ideas for the behaviour of real-time system controll
can also be described using DC formulae.

o The correctness of a design idea wrt. requirements

can principally be proven “on foot”

(using the DC semantics and analysis results).
 This approach is not limited to
over-simplified (?) gas burner controllers:
» Consider plant assumptions.
o Use intermediate designs in a step-by-step developmen
o Link different observables by invariants.
o Consider other proof techniques.

References

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Autor
Cambridge University Press

