Content

« Correctness Proof
for the Gas Burner Implementables

Real-Time Systems « Now where's the implementation?
+ Programmable Logic Controllers (PLC) e e . X i
Lecture 9: DC N\:N&NEN\;Q@NQM 11 « How do they look ke? Recall: Specification of a Gas Burner Controller
« Whats special about them?
» The read/compute/write cycle of PLC

2017-11-28 » Example: Stutter
W. Structured Text example
« Other IEC 61131-3 programming languages

Dr. Bernd Westphal « PLC Automata
 Example: Stutter Filter
Albert-Ludwigs-Universitat Freiburg, Germany @ PLCA Semantics by example
o Cycle time
¢ 20 .
Gas Burner Controller: The Complete Specification Gas Burner Controller: The Complete Specification
¢ f e, L ik, ko] Gas Valve: (out
g et Controler: local) 2 Valve: foutput)
Controller: (local) T\ [V idle] ; true, M1V [-G1 w:i
1V lidle] ; true, Init-1) -) [idle] —> fidle V purge] [G A (idle v purge)] l‘TE (Syn-3)
fidle] —» [idle V purge] (Seqr1) n H rore [purge] —s [purge V ignite] [=G A (ignite V burn)] =+ [G] (Syn-4)
[purge] —» [purge V ignite] (Seq-2) S [ignite] — [ignite V burn] [G1: -G A (idle v purge)] — Tmnuc o Implementable Gas Burner Controller:
[ignite] —» [ignite \ burn] (Seq-3) % [burn] — [burn V idle] (Seq-4) b~ y
AWW orrectness Proo,
[burn] — [burn V idle] (Seq-4) 205 Zome [purge] 2% [—purge] (Prog-1) [=G A (idle v purge)] —+o ._MML.?_:& c f
[purge] E. [—purge] (Prog-1) [ignite] “5° [—ignite] (Prog-2) 1G5 [G A (ignite v burn)] — [G]
[ignite] 5 [—ignite] (Prog-2) [~purge] ; [purge] =% [purge] (Stab-2) (Stab-7)
[—purge] : [purge] =% [purge] (Stab-2) [-ignite] ; ignite] =* [ignite] (Stab-3) Heating Request: (input)
[—ignite] ; [ignite] =25 [ignite] (Stab-3) lidle A H] 55 [—idle] 1V Tt true, (nit-2)
[idle A H] —= [~idle] (Syn-1) [burn A (=H V ~F)] —= [=burn] .
[burn A (~H V ~F)] — [~burn] (Syn-2) [idle] s [idle A ~H] — [idle] Flame: (input)
[-idle] ; [idle A =H] — [idle] (Stab-1) idle A ~H —q [idle] [TV [~F]; true, -3)
[idle A ~H] —o [idle] (Stab-1-init) [=burn] ; [burn A H A F] — ?__m_ﬁwvé [F]: [~F A ~ignite] — [~F] (Stab-5)
[=burn] ; [burn A H A F] — [burn] [~F A —ignite] — [~F] (Stab-5:

3 (Stab-4) H g

Gas Burner Controller

Set GB-Ctrl := Init-1 A --- A Stab-7 A g > 0.
In the following, we show
k= GB-Ctrl A A(s) = Req-1.
where A(s) constrains the reaction time of computers executing the control program
Read: if a program behaving like ‘GB-Ctrl' is executed on a computer
with reaction time e such that A(¢) holds, then 'Req’is satisfied in the system.

Recall:
Req:<= [O({ > 60 = 20-[L <)

and (cf. Olderog and Dierks (2008))
= Req-1 = Req
~——————

for the simplified requirement

Req-1:=0((<30 = [L<1).

Lemma 3.16

E3eeGB-Ctrl — O((<30 = [L<1)
=T
Reg-1

Proof: Let Z, V, and [b, ¢] such that Z, V, [= GB-Ctrl A £ < 30.

Distinguish 5 cases:

= ([purge] s true A £ < 30)
) V. ; o] = ([ignite] ; true A £ < 30)
) Z,V, [b.e] = ([burn] ; true A € < 30)

Lemma 3.16 Cont’d (ide] — /G

_Lemma 315 (lde— /G

E GB-Ctrl — O MFEE = [G=se

A)
A ([ignite] = < ow+mu
A ([burn] = [—F < 2)

Proof: Let 7 be an interpretation, V' a valuation, and [c, d] an interval with Z, V, [c, d] }= GB-Ctrl.

[G A (idle V purge)] —= [~G] (Syn-3)
[G]: [~G A (idle v purge)] — [~G] (Stab-6)

we can conclude

TEO(G] = (<) A=0([G1:[-G15
et ratzien
EiGse by (Syn-3). the valve is /Easvs. the valve
- closed within < time units doesn't open again
when in ‘idle’

when in ‘idle’

o Case2:Z,V, [b,¢] |= [purge] Analogously to case 1

g A(fpure] —
315: GB-Ctrl = O A(Jignite] — £< 0.5

el =1 A(fburn] = [-F <2

-

o Case (ii): Z,V, [b, ¢] |= [idle] ; true A £ < 30
From

[idle] — T[idle v purge] (Seg-1)

[-purge] ; [purge] =23 [purge] (Stab-2)

we can conclude

IV.[b.e] = —a_m_ \ ?:L F:ﬁi
By 315, |
_m_Tth%? inm&

hence
IV.[bell=[L<

Thus <05 is suffi

ent for Req-1(/ L < 1) in this case,

Lemma 3.15 Cont’d

de] — JG<o)
Afpuge] = JG<)
GB-cul = | L 0559
Aburn] = f—F <2¢)

o Case3:7,V, [b,e] | [ignite]

From
Tignite] "2 [~ig (Prog-2)
we can directly conclude Z, V, [b,¢] = £ < 0.5 + &.
o Case4: .V, [b,e] = [burn]
From
[burn A (=H V =F)] = [-burn] (Syn-2)
[F] 5 [~F A ignite] — [~F] (Stab-5)

we can conclude

IV, (el EO(-F] = £<¢) A~0([F]: [2F]: [F])
“mnn by (Stab-5)

Thus Z,V, [b,e] |= [~F < 2z

8/a
Lemma 3.16 Cont’d >:§j = “mmmw
_ remma 5. 10 Cont a purge e=r
S EFE) = B|| i = e o)
A(Tbum] = [=F < 2¢)
« Case (ii): Z,V, [b,¢] |= [burn] ; true A £ < 30
From
Tburn] —s [burn v idie] (Seq-4)

we can conclude

L.V, [b,e] = ([ourn] V [burn] ;
.

dle] ; true) A £ < 30.

I
/
By 3.15 and Case (ii), !

\
V. Ibe %hum ﬁémm@?m vaim%.

hence

el [L < 4e.

Thus | <0.25| issufficient for Req-1(f L < 1) in this case.

Lemma 3.16 Cont’d >::a,m = memw

. purg <e,
atsce-col — 0 AftE = J2S9
A(Tburn] — [~F <2¢)

o Case (iv): Z,V, [b, e] |= [ignite] ; true A £ < 30
From

[ignite] — [ignite V burn] (Seq-3)
we can conclude

Z,V,[b, €] = ([ignite] V [ignite] ; [burn] ; true) A £ < 30.
! o

By 3.15 and Case (ii), / ‘

IV, [bel (L Ao.m+mv<onA:.m+m%@~m# AL<30

hence
IV, [be] = [L <05+ 5e.
Thus |=<0.1 sufficient for Req-1(/ L < 1) in this case.
Discussion

* We used only
‘Seq-1, ‘Seq-2, ‘Seq-3, ‘Seq-4.
‘Prog-2, ‘Syn-2, ‘Syn-3;
‘Stab-2, ‘Stab-5, ‘Stab-6.

What about
Prog-1 = [purge] 25 [-purge]

for instance?

2n

1542

Lemma 3.16 Cont’d ([idle] = wm

. GB- A([purge] =
3is:68-Col = 0| TR T, 0%

Afburn] = [—F <2<

<
<
T

Case (v): Z,V, [b, ¢] |= [purge] ; true A £ < 30
From

[purge] — [purge V ignite] (Seq-2)

and 315 and Case

) we can conclude

IV, [be] = [L <0.5+6e.

Thus ¢ < | issufficient for Req-1(f L < 1) in this case. O

Lemma 3.16.

E3eeGB-Ctrl — O((<30 — [L<1)
== IEsY)
Reg-1

Discussion

» We used only
‘Seq-1, ‘Seq-2, 'Seq-3, ‘Seq-4,
‘Prog-2, ‘Syn-2, ‘Syn-3,
‘Stab-2, ‘Stab-5, ‘Stab-6.

What about
Prog-1 = [purge] 25 [~purge]

for instance?

We only proved the safety property on leakage,
we did not consider the (not formalised) liveness requirement:
the controller should do something finally,

e.g. heating requests should be served finally by trying an igni

13/

151

Correctness Result

Theorem 3.17.
1
E Anm.nn_‘;m < mv — Req

Recall:
® Req-1=0)(¢ <30 = [L < 1)implies Req.
© 315 [purge] = [L <z

purge | ignite | bum | idle | purge

—>30— | —(>05— —{>30—

[— f<30 F

3D

o Thus [L < 0.5 + 6, so a sufficient reaction time constraintis A(c) := ¢

Content

« Correctness Proof
for the Gas Burner Implementables
e
« Now where’s the implementation?
 Programmable Logic Controllers (PLC)
(o How do they look like?
{» Whats special about them?
(o The read/compute/write cycle of PLC

o Example: Stutter Filter

T. Structured Text example
(» Other IEC 61131-3 programming languages

 PLC Automata

= Example: Stutter Filter

o PLCA Semantics by example
o Cycle time

ite] —> [L <05+ [bun] —> [L <2 [idle] = [L<e

16/02

Content

Now Where’s the Implementation?

» Correctness Proof
for the Gas Burner Implementables

= Now where's the implementation?
« Programmable Logic Controllers (PLC)
e How do they look like?
(» Whats special about them?
e The read/compute/write cycle of PLC

o Example: Stutter Filter
W. Structured Text example
(o Other IEC 61131-3 programming languages

o PLC Automata
« Example: Stutter Filter
 PLCA Semantics by example

o Cycle time

17m

The Plan

FullDC DCImplementables PLC-Automata IEC 61131-3 Binary

‘Req’

prove

Do NP

Y

N\-
prove

properties of
generated
PLCA
using DC

“Impl

[Albe

synthesis / code generation (in the book)

later

/ﬁﬁ%_m

What is a PLC?

ST

[

/Mo:n%_ compiler

2n

The Plan

Full DC plement tomata IEC 61131-3 Binary

‘Impl",

é_is%mmi.g% (in thefbook)

How do PLC look like?

What's special about PLC? Where are PLC employed? How are PLC programmed?

© mostly process

automatisation « PLC have in common that they operate in a cyclic manner:
« production lines read inputs
 packaging lines
» chemical plants
« power plants compute
o electric motors,
pneumatic or hydraulic
* microprocessor, cylinders write outputs

memord timers ...

« digital (or analog) /0 ports

« possibly RS 232,
fieldbuses, networking

o robust hardware

» Cyclic operation is repeated until external interruption
» not so much: product (such as shutdown or reset).
automatisation, there « Cycle time: typically a few milliseconds (Lukoschus, 2004),
« tailored or OTS

« reprogrammable controller boards » Programming for PLC means providing the “compute” part.
o standardised programming * embedded controllers « Input/output values are available via designated local variables.
model (IEC 61131-3) i
i 2n: 250
How are PLC programmed, practically? Example: Stutter Filter How are PLC programmed, practically read inputs

1 |PROGRAM PLC_PRG_FILTER
o Example: reliable, stutter-free train sensor. ’ N .. T _— 2 |var
o Idea: a stutter filter with outputs IV and 7', for “no train” and “train passing’ : Lt INT = 05 (+ O, 1T, 20eX %) write outputs
" " state =0 =N, 1i=T, 2=
» Assume a track-side sensor which outputs: (and possibly X', for error). 4| tmr ™
e, . s [ENDVAR
e no_tr —iff “no passing train’ no_tr o v ~ “
o tr — iff “a train is passing” 7 |IF state = O THEN (|
tr 8 %output = N; <
. PN N . E— X 5 TF input = tr THEN <

« Assume that a change from “no_tr" to “tr” signals arrival of a train. 3 state := 1

(No spurious sensor values.) " %output := T;

" . B . " ELSIF %input = Error THEN
After arrival of a train, it should ignore “no_tr" for 5 seconds. . P rer

« Problem: the sensor may stutter, " X

i.e. oscillate between “no_tr"” and “tr” multiple times. 1 |ELSIF state = 1 THEN

18 tmr(IN := TRUE, PT := t#50s);
tr e L " IF (%input = no_tr AND NOT tmr.Q) THEN
HEER i 0 0 state i
no_tr ER EEE 2 %output = N:
2 tmr(IN := FALSE, PT := t#0.0s)
T T 3 ELSIF %input = Error THEN
[2 3 4 5 6 7 ''M™ p state := 2
2% %output := X:
: 26 tmr(IN := FALSE. PT := t#00s)
7 ENDIF
28 |ENDIF

2602 2m 28/

How are PL

C programmed, practically? read inputs

IF state
Youtp

10 s
n %
n ELSIF

PROGRAM PLC_PRG_FILTER

IF %input = tr THEN

e ——

INT := 0: (* 0N, T:=T, 2:X *) write outputs

:v./

= 0 THEN
ut = N

declare timer tmr
intuitive semantics

« do the assignment
« ifassignment changed Iy
from FALSE to TRUE (rising

tate := 1;

output = T: edge on IN") then set tar to
%input = Error THEN given duration

tate = 2; (initially. 11 is FALSE)
output = X; duration

\

18 tmr = TRUE. PT := t#50s):

9 IF (%input = no_tr AND NOT tmr.Q) THEN

1 state := O —

2 %output = N;

n tmr(IN := FALSE, PT := t#00s) TRUE: iff tmr is
n ELSIF %input = Error THEN stillrunning fhee if
2% state := 2:

2 %output := X; S notyetelopsed)
2 tmr(IN := FALSE, PT := t#0.0s)

7 ENDIF

28 |ENDIF

28/02

Tell Them What You’ve Told Them. ..

We can prove the Gas Bumer jrfiplementables correct by care-
fully considering its phases.
Acrucial aspect is reaction time;
« Controler programs executed on some hardware platform
do not react in 0-time,
« some pltf be too slow 16 satisfy

Programmable Logic Controllers (PLC)

are epitomic for real-time controller platforms:
« havea real-time clock device,

« can read inputs and write oytputs,

« can manage local state.

PLC programs
« are executed in read/compute/write cycles,

o havea cycle-time (possibly a watchdog).

PLC Automata are a more abstract (than IEC 61131-3)
way of describing and studying PLC programs.

40/m

Alternative Programming Languages by IEC 61131-3

Figure 2.2:

~—— step (initial)

Tied together by
« Sequential Function Charts (SFC)

Unfortunate: deviations
in semantics... Baver (2003)

Figure 2.3: El

References

29/

4

Content

« Correctness Proof
for the Gas Burner Implementables

» Now where's the implementation?

o Programmable Logic Controllers (PLC)
(o How do they look like?
(Whats special about them?
(o The read/compute/write cycle of PLC

o+ Example: Stutter Filter
T Structured Text example

(s Other IEC 61131-3 programming languages
PLC Automata

« Example: Stutter Filter
o PLCA Semantics by example

o Cycle time

References

Bauer, N. (2003). Formale Analyse von Sequential Function Charts. PhD thesis, Universitét Dortmund.

Lukoschus, B. (2004). Compositional Ver
Christian-Albrechts-Universitat zu Kiel

n of Industrial Control Systems. PhD thesis,

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

390

42a

