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Gas Burner Controller

Set GB-Ctrl := Init-1 A --- A Stab-7 A g > 0.
In the following, we show
k= GB-Ctrl A A(s) = Req-1.
where A(s) constrains the reaction time of computers executing the control program
Read: if a program behaving like ‘GB-Ctrl' is executed on a computer
with reaction time e such that A(¢) holds, then 'Req’is satisfied in the system.

Recall:
Req:<= [O({ > 60 = 20-[L <)

and (cf. Olderog and Dierks (2008))
= Req-1 = Req
~——————

for the simplified requirement

Req-1:=0(( <30 = [L<1).

Lemma 3.16

E3eeGB-Ctrl — O((<30 = [L<1)
=T
Reg-1

Proof: Let Z, V, and [b, ¢] such that Z, V, [= GB-Ctrl A £ < 30.

Distinguish 5 cases:

= ([purge] s true A £ < 30)
) V. ; o] = ([ignite] ; true A £ < 30)
) Z,V, [b.e] = ([burn] ; true A € < 30)

Lemma 3.16 Cont’d (ide] — /G

_Lemma 315 (lde— /G

E GB-Ctrl — O MFEE = [G=se

A )
A ([ignite] = < ow+mu
A ([burn] = [—F < 2)

Proof: Let 7 be an interpretation, V' a valuation, and [c, d] an interval with Z, V, [c, d] }= GB-Ctrl.

[G A (idle V purge)] —= [~G] (Syn-3)
[G]: [~G A (idle v purge) ] — [~G] (Stab-6)

we can conclude

TEO(G] = (<) A=0([G1:[-G15
et ratzien
EiGse by (Syn-3). the valve is /Easvs. the valve
- closed within < time units doesn't open again
when in ‘idle’

when in ‘idle’

o Case2:Z,V, [b,¢] |= [purge] Analogously to case 1

g A(fpure] —
315: GB-Ctrl = O A(Jignite] — £< 0.5

el =1 A(fburn] = [-F <2

-

o Case (ii): Z,V, [b, ¢] |= [idle] ; true A £ < 30
From

[idle] — T[idle v purge] (Seg-1)

[-purge] ; [purge] =23 [purge] (Stab-2)

we can conclude

IV.[b.e] = —a_m_ \ ?:L F:ﬁi
By 315, |
_m_Tth%? inm&

hence
IV.[bell=[L<

Thus <05 is suffi

ent for Req-1(/ L < 1) in this case,

Lemma 3.15 Cont’d

de] —  JG<o)
Afpuge] = JG<)
GB-cul = | L 0559
Aburn] = f—F <2¢)

o Case3:7,V, [b,e] | [ignite]

From
Tignite] "2 [~ig (Prog-2)
we can directly conclude Z, V, [b,¢] = £ < 0.5 + &.
o Case4: .V, [b,e] = [burn]
From
[burn A (=H V =F)] = [-burn] (Syn-2)
[F] 5 [~F A ignite] — [~F] (Stab-5)

we can conclude

IV, (el EO(-F] = £<¢) A~0([F]: [2F]: [F])
“mnn by (Stab-5)

Thus Z,V, [b,e] |= [ ~F < 2z

8/a
Lemma 3.16 Cont’d >:§j = “mmmw
_ remma 5. 10 Cont a purge e=r
S EFE) = B|| i = e o)
A(Tbum] = [=F < 2¢)
« Case (ii): Z,V, [b,¢] |= [burn] ; true A £ < 30
From
Tburn] —s [burn v idie] (Seq-4)

we can conclude

L.V, [b,e] = ([ourn] V [burn] ;
.

dle] ; true) A £ < 30.

I
/
By 3.15 and Case (ii), !

\
V. Ibe %hum ﬁémm@?m vaim%.

hence

el [ L < 4e.

Thus | <0.25| issufficient for Req-1(f L < 1) in this case.



Lemma 3.16 Cont’d >::a,m = memw

. purg <e,
atsce-col — 0 AftE = J2S9
A(Tburn] — [~F <2¢)

o Case (iv): Z,V, [b, e] |= [ignite] ; true A £ < 30
From

[ignite] — [ignite V burn] (Seq-3)
we can conclude

Z,V,[b, €] = ([ignite] V [ignite] ; [burn] ; true) A £ < 30.
! o

By 3.15 and Case (ii), / ‘

IV, [bel (L Ao.m+mv<onA:.m+m%@~m# AL<30

hence
IV, [be] = [ L <05+ 5e.
Thus |=<0.1 sufficient for Req-1(/ L < 1) in this case.
Discussion

* We used only
‘Seq-1, ‘Seq-2, ‘Seq-3, ‘Seq-4.
‘Prog-2, ‘Syn-2, ‘Syn-3;
‘Stab-2, ‘Stab-5, ‘Stab-6.

What about
Prog-1 = [purge] 25 [-purge]

for instance?

2n

1542

Lemma 3.16 Cont’d ([idle] = wm

. GB- A([purge] =
3is:68-Col = 0| TR T, 0%

Afburn] = [—F <2<

<
<
T

Case (v): Z,V, [b, ¢] |= [purge] ; true A £ < 30
From

[purge] — [purge V ignite] (Seq-2)

and 315 and Case

) we can conclude

IV, [be] = [L <0.5+6e.

Thus ¢ < | issufficient for Req-1(f L < 1) in this case. O

Lemma 3.16.

E3eeGB-Ctrl — O((<30 — [L<1)
== IEsY)
Reg-1

Discussion

» We used only
‘Seq-1, ‘Seq-2, 'Seq-3, ‘Seq-4,
‘Prog-2, ‘Syn-2, ‘Syn-3,
‘Stab-2, ‘Stab-5, ‘Stab-6.

What about
Prog-1 = [purge] 25 [~purge]

for instance?

We only proved the safety property on leakage,
we did not consider the (not formalised) liveness requirement:
the controller should do something finally,

e.g. heating requests should be served finally by trying an igni
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Correctness Result

Theorem 3.17.
1
E Anm.nn_‘;m < mv — Req

Recall:
® Req-1=0)(¢ <30 = [ L < 1)implies Req.
© 315 [purge] = [L <z

purge |  ignite | bum | idle |  purge

—>30— | —(>05— —{>30—

[— f<30 F

3D

o Thus [ L < 0.5 + 6, so a sufficient reaction time constraintis A(c) := ¢
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ite] —> [L <05+ [bun] —> [L <2 [idle] = [L<e
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What's special about PLC? Where are PLC employed? How are PLC programmed?

© mostly process

automatisation « PLC have in common that they operate in a cyclic manner:
« production lines read inputs
 packaging lines
» chemical plants
« power plants compute
o electric motors,
pneumatic or hydraulic
* microprocessor, cylinders write outputs

memord timers ...

« digital (or analog) /0 ports

« possibly RS 232,
fieldbuses, networking

o robust hardware

» Cyclic operation is repeated until external interruption
» not so much: product (such as shutdown or reset).
automatisation, there « Cycle time: typically a few milliseconds (Lukoschus, 2004),
« tailored or OTS

« reprogrammable controller boards » Programming for PLC means providing the “compute” part.
o standardised programming * embedded controllers « Input/output values are available via designated local variables.
model (IEC 61131-3) i . ...
i 2n: 250
How are PLC programmed, practically? Example: Stutter Filter How are PLC programmed, practically read inputs

1 |PROGRAM PLC_PRG_FILTER
o Example: reliable, stutter-free train sensor. ’ N .. T _— 2 |var
o Idea: a stutter filter with outputs IV and 7', for “no train” and “train passing’ : Lt INT = 05 (+ O, 1T, 20eX %) write outputs
" " state =0 =N, 1i=T, 2=
» Assume a track-side sensor which outputs: (and possibly X', for error). 4| tmr ™
e, . s [ENDVAR
e no_tr  —iff “no passing train’ no_tr o v ~ “
o tr — iff “a train is passing” 7 |IF state = O THEN (|
tr 8 %output = N; <
. PN N . E— X 5 TF input = tr THEN <

« Assume that a change from “no_tr" to “tr” signals arrival of a train. 3 state := 1

(No spurious sensor values.) " %output := T;

" . B . " ELSIF %input = Error THEN
After arrival of a train, it should ignore “no_tr" for 5 seconds. . P rer

« Problem: the sensor may stutter, " X

i.e. oscillate between “no_tr"” and “tr” multiple times. 1 |ELSIF state = 1 THEN

18 tmr( IN := TRUE, PT := t#50s );
tr e L " IF (%input = no_tr AND NOT tmr.Q) THEN
HEER i 0 0 state i
no_tr ER EEE 2 %output = N:
2 tmr( IN := FALSE, PT := t#0.0s )
T T 3 ELSIF %input = Error THEN
[ 2 3 4 5 6 7 ''M™ p state := 2
2% %output := X:
: 26 tmr( IN := FALSE. PT := t#00s )
7 ENDIF
28 |ENDIF

2602 2m 28/




How are PL

C programmed, practically? read inputs

IF state
Youtp

10 s
n %
n ELSIF

PROGRAM PLC_PRG_FILTER

IF %input = tr THEN

e ——

INT := 0: (* 0N, T:=T, 2:X *) write outputs

:v./

= 0 THEN
ut = N

declare timer tmr
intuitive semantics

« do the assignment
« ifassignment changed Iy
from FALSE to TRUE (rising

tate := 1;

output = T: edge on IN") then set tar to
%input = Error THEN given duration

tate = 2; (initially. 11 is FALSE)
output = X; duration

\

18 tmr = TRUE. PT := t#50s ):

9 IF (%input = no_tr AND NOT tmr.Q) THEN

1 state := O —

2 %output = N;

n tmr( IN := FALSE, PT := t#00s ) TRUE: iff tmr is
n ELSIF %input = Error THEN stillrunning fhee if
2% state := 2:

2 %output := X; S notyetelopsed)
2 tmr( IN := FALSE, PT := t#0.0s )

7 ENDIF

28 |ENDIF
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Tell Them What You’ve Told Them. ..

We can prove the Gas Bumer jrfiplementables correct by care-
fully considering its phases.
Acrucial aspect is reaction time;
« Controler programs executed on some hardware platform
do not react in 0-time,
« some pltf be too slow 16 satisfy

Programmable Logic Controllers (PLC)

are epitomic for real-time controller platforms:
« havea real-time clock device,

« can read inputs and write oytputs,

« can manage local state.

PLC programs
« are executed in read/compute/write cycles,

o havea cycle-time (possibly a watchdog).

PLC Automata are a more abstract (than IEC 61131-3)
way of describing and studying PLC programs.

40/m

Alternative Programming Languages by IEC 61131-3

Figure 2.2:

~—— step (initial)

Tied together by
« Sequential Function Charts (SFC)

Unfortunate: deviations
in semantics... Baver (2003)

Figure 2.3: El

References
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