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Real-Time Systems

Lecture 14: Regions and Zones

2017-12-21

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
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• Motivation:
Sometimes, regions seem too fine-grained

• Definition

• Examples: Zone or Not Zone

• Zone-based Reachability Analysis

• The basic algorithm.

• Building blocks:

• Post-operator,

• subsumption check

• A symbolic Post-operator

• Difference-Bounds-Matrices (DBMs)

• Discussion: Zones vs. Regions



Zones

(Presentation following Fränzle (2007))
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Recall: Number of Regions
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Lemma 4.28. Let X be a set of clocks, cx ∈ N0 the maximal constant for each
x ∈ X , and c = max{cx | x ∈ X}. Then

(2c+ 2)|X| · (4c+ 3)
1

2
|X|·(|X|−1)

is an upper bound on the number of regions.

• In the desk lamp controller,

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

many regions are reachable in R(L), but we convinced ourselves that it’s actually
only important whether ν(x) ∈ [0, 3] or ν(x) ∈ (3,∞).

So: it seems like there are even equivalence classes of undistinguishable regions
in certain timed automata.



Wanted: Zones instead of Regions
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• In R(L) we have transitions:

• 〈 light , {0}〉
press?
−−−−→ 〈 bright , {0}〉, 〈 light , {0}〉

press?
−−−−→ 〈 bright , (0, 1)〉,

• . . . ,

• 〈 light , {0}〉
press?
−−−−→ 〈 bright , (2, 3)〉, 〈 light , {0}〉

press?
−−−−→ 〈 bright , {3}〉

• Which seems to be a complicated way to write just:

〈 light , {0}〉
press?
−−−−→ 〈 bright , [0, 3]〉

• Can’t we constructively abstract L to:

〈 off , {0}〉 〈 light , {0}〉 〈 bright , [0, 3]〉

〈 off , (3,∞)〉 〈 off , [0,∞)〉

press? press?

press?

press?

press?

press?
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Definition. A (clock) zone is a set z ⊆ (X → Time) of valuations of clocks
X such that there exists ϕ ∈ Φ(X) with

ν ∈ z if and only if ν |= ϕ.

Example:

0

1

2

0 1 2 3
x

y

z

is a clock zone by

ϕ = (x ≤ 2) ∧ (x > 1) ∧ (y ≥ 1) ∧ (y < 2) ∧ (x− y ≥ 0)
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Definition. A (clock) zone is a set z ⊆ (X → Time) of valuations of clocks
X such that there exists ϕ ∈ Φ(X) with

ν ∈ z if and only if ν |= ϕ.

Example:

0

1

2

0 1 2 3
x

y

z

is a clock zone by

ϕ = (x ≤ 2) ∧ (x > 1) ∧ (y ≥ 1) ∧ (y < 2) ∧ (x− y ≥ 0)

• Note: Each clock constraint ϕ is a symbolic representation of a zone.

• But: There’s no one-on-one correspondence between clock constraints and zones.
The zone z = ∅ corresponds to (x > 1 ∧ x < 1), (x > 2 ∧ x < 2), . . .
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z is a zone iff there is ϕ ∈ Φ(X)
s.t. z = {ν | ν |= ϕ}.

•

0

1

2

0 1 2 3
x

y

•

0

1

2

0 1 2 3
x

y

•

0

1

2

0 1 2 3
x

y
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Given:

• off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

and initial configuration 〈 off , {0}〉

Assume a function
Poste : (L× Zones) → (L× Zones)

such that Poste(〈ℓ, z〉) yields the configuration 〈ℓ′, z′〉 such that

• zone z′ denotes exactly those clock valuations ν′

• which are reachable from a configuration 〈ℓ, ν〉, ν ∈ z,

• by taking edge e = (ℓ, α, ϕ, Y, ℓ′) ∈ E .

Then ℓ ∈ L is reachable in A if and only if

Posten(. . . (Poste1(〈ℓini, zini〉) . . . )) = 〈ℓ, z〉

for some e1, . . . , en ∈ E and some z.

Zone-based Reachability: In Other Words
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Given:

• off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

and initial configuration 〈 off , {0}〉

Wanted: A procedure to compute
the set

• 〈 light , {0}〉

• 〈 bright , [0, 3]〉

• 〈 off , [0,∞)〉

• Set R := {〈ℓini , zini〉} ⊂ L× Zones

• Repeat

• pick

• a pair 〈ℓ, z〉 from R and

• an edge e ∈ E with source ℓ

such that Poste(〈ℓ, z〉)
is not already subsumed by R

• add Poste(〈ℓ, z〉) to R

until no more such
〈ℓ, z〉 ∈ R and e ∈ E are found.
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• Set R := {〈ℓini , zini〉} ⊂ L× Zones

• Repeat

• pick

• a pair 〈ℓ, z〉 from R and

• an edge e ∈ E with source ℓ

such that Poste(〈ℓ, z〉) is not already subsumed by R

• add Poste(〈ℓ, z〉) to R

until no more such 〈ℓ, z〉 ∈ R and e ∈ E are found.

Missing:

• Algorithm to effectively compute Poste(〈ℓ, z〉)
for a given configuration 〈ℓ, z〉 ∈ L× Zones and an edge e ∈ E.

• Decision procedure for whether
configuration 〈ℓ′, z′〉 is subsumed by a given subset of L× Zones.

Note: The algorithm in general terminates only if we apply widening to zones, that is,
roughly, to take maximal constants cx into account (not in lecture).

What is a Good “Post”?
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• If z is given by a constraint ϕ ∈ Φ(X), (write: z = JϕK)
then the zone component z′ of Poste(ℓ, z) = 〈ℓ′, z′〉
should also be a constraint from Φ(X).

(We want to manipulate constraints, not those unhandy sets of clock valuations.)

Good news: the following operations can be carried out by manipulating ϕ.

(1) The elapse time operation:

↑ : Zones → Zones

z 7→ {ν + t | t ∈ Time}

can be carried out symbolically as follows:

• Let z = JϕK.

• Obtain ϕ′ by removing all upper bounds x ≤ c, x < c, from ϕ and adding diagonals.

• Then Jϕ′K = z ↑.

This procedure defines ↑: Φ(X) → Φ(X) (a function on clock constraints!),
such that Jϕ ↑K = z ↑ if z = JϕK.
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Good news: the following operations can be carried out by manipulating ϕ.

(1) elapse time: ϕ ↑ with Jϕ ↑K = z ↑ if z = JϕK.

(2) zone intersection: if z1 = Jϕ1K and z2 = Jϕ2K, then Jϕ1 ∧ ϕ2K = z1 ∩ z2.

(3) clock reset:
· [ · := 0] : Zones×X → Zones

(z, x) 7→ {ν[x := 0] | ν ∈ z}

can be carried out symbolically by setting

· [ · := 0] : Φ×X → Φ
(ϕ, x) 7→ (x = 0) ∧ ∃x.ϕ

using clock hiding (existential quantification);

J∃x.ϕK = {ν | there is t ∈ Time such that ν[x := t] |= ϕ}

This is Good News...
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...because given 〈ℓ, z〉 = 〈ℓ, Jϕ0K〉 and e = (ℓ, α, ϕ, {y1, . . . , yn}, ℓ
′) ∈ E we have

Poste(〈ℓ, z〉) = 〈ℓ′, Jϕ5K〉 (symbolical:Poste(〈ℓ, ϕ0〉) = 〈ℓ′, ϕ5〉)

where

• ϕ1 = ϕ0 ↑

let time elapse starting from ϕ0:

ϕ1 represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

• ϕ2 = ϕ1 ∧ I(ℓ)

intersect with invariant of ℓ: ϕ2 represents the “good” valuations reachable from ϕ1.

• ϕ3 = ϕ2 ∧ ϕ

intersect with guard: in ϕ3 are the reachable “good” valuations where e is enabled.

• ϕ4 = ϕ3[y1 := 0] . . . [yn := 0]

reset clocks: ϕ4 are all possible outcomes of taking e from ϕ3.

• ϕ5 = ϕ4 ∧ I(ℓ′)

intersect with invariant of ℓ′: ϕ5 are the “good” outcomes of taking e from ϕ3.
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ℓ

y < 3
ℓ′

x > 1

x ≤ 2

y := 0

• ϕ1 = ϕ0 ↑ let time elapse.
• ϕ2 = ϕ1 ∧ I(ℓ) intersect with invariant of ℓ

• ϕ3 = ϕ2 ∧ ϕ intersect with guard

• ϕ4 = ϕ3[y1 := 0] . . . [yn := 0] reset clocks

• ϕ5 = ϕ4 ∧ I(ℓ′) intersect with invariant of ℓ′
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ℓ

y < 3
ℓ′

x > 1

x ≤ 2

y := 0

• ϕ1 = ϕ0 ↑ let time elapse.
• ϕ2 = ϕ1 ∧ I(ℓ) intersect with invariant of ℓ

• ϕ3 = ϕ2 ∧ ϕ intersect with guard

• ϕ4 = ϕ3[y1 := 0] . . . [yn := 0] reset clocks

• ϕ5 = ϕ4 ∧ I(ℓ′) intersect with invariant of ℓ′

ϕ0 = 1 ≤ y ≤ 2

∧ 1 ≤ x ≤ 3 ∧ x ≥ y
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ℓ

y < 3
ℓ′

x > 1

x ≤ 2

y := 0

• ϕ1 = ϕ0 ↑ let time elapse.
• ϕ2 = ϕ1 ∧ I(ℓ) intersect with invariant of ℓ

• ϕ3 = ϕ2 ∧ ϕ intersect with guard

• ϕ4 = ϕ3[y1 := 0] . . . [yn := 0] reset clocks

• ϕ5 = ϕ4 ∧ I(ℓ′) intersect with invariant of ℓ′

ϕ0 = 1 ≤ y ≤ 2

∧ 1 ≤ x ≤ 3 ∧ x ≥ y

0

1

2

0 1 2 3
x

y

ϕ0
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ℓ

y < 3
ℓ′

x > 1

x ≤ 2

y := 0

• ϕ1 = ϕ0 ↑ let time elapse.
• ϕ2 = ϕ1 ∧ I(ℓ) intersect with invariant of ℓ

• ϕ3 = ϕ2 ∧ ϕ intersect with guard

• ϕ4 = ϕ3[y1 := 0] . . . [yn := 0] reset clocks

• ϕ5 = ϕ4 ∧ I(ℓ′) intersect with invariant of ℓ′

ϕ0 = 1 ≤ y ≤ 2

∧ 1 ≤ x ≤ 3 ∧ x ≥ y

ϕ1 = 1 ≤ y ∧ 1 ≤ x

∧ x ≥ y ∧ x ≤ y + 2

0

1
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0 1 2 3
x

y

ϕ0
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• ϕ5 = ϕ4 ∧ I(ℓ′) intersect with invariant of ℓ′

ϕ0 = 1 ≤ y ≤ 2

∧ 1 ≤ x ≤ 3 ∧ x ≥ y

ϕ1 = 1 ≤ y ∧ 1 ≤ x

∧ x ≥ y ∧ x ≤ y + 2

ϕ2 = 1 ≤ y < 3∧ 1 ≤ x

∧ x ≥ y ∧ x ≤ y + 2
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• Motivation:
Sometimes, regions seem too fine-grained

• Definition

• Examples: Zone or Not Zone

• Zone-based Reachability Analysis

• The basic algorithm.

• Building blocks:

• Post-operator,

• subsumption check

• A symbolic Post-operator

• Difference-Bounds-Matrices (DBMs)

• Discussion: Zones vs. Regions
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• Given a finite set of clocks X , a DBM over X is a mapping

M : (X ∪̇ {x0})× (X ∪̇ {x0}) → ({<,≤} ×Z) ∪ {(<,∞)}

• M(x, y) = (∼, c) encodes the conjunct x− y ∼ c (x and y can be x0).
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• Given a finite set of clocks X , a DBM over X is a mapping

M : (X ∪̇ {x0})× (X ∪̇ {x0}) → ({<,≤} ×Z) ∪ {(<,∞)}

• M(x, y) = (∼, c) encodes the conjunct x− y ∼ c (x and y can be x0).

• If M and N are DBMs encoding ϕ1 and ϕ2 (representing zones z1 and z2),

then we can efficiently compute M ↑, M ∧N , M [x := 0] such that

• all three are again DBM,

• M ↑ encodes ϕ1 ↑,

• M ∧N encodes ϕ1 ∧ ϕ2, and

• M [x := 0] encodes ϕ1[x := 0].

• And there is a canonical form of DBM.

(Canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm)).

• Thus: we can define our ‘Post’ on DBM, and let our algorithm run on DBM.
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• Motivation:
Sometimes, regions seem too fine-grained

• Definition

• Examples: Zone or Not Zone

• Zone-based Reachability Analysis

• The basic algorithm.

• Building blocks:

• Post-operator,

• subsumption check

• A symbolic Post-operator

• Difference-Bounds-Matrices (DBMs)

• Discussion: Zones vs. Regions
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• Zone-based
reachability analysis usually is explicit wrt. discrete locations:

• maintains a list of location/zone pairs (or location/DBM pairs)

• confined wrt. size of discrete state space

• avoids blowup by number of clocks and size of clock constraints
through symbolic representation of clocks

• Region-based
analysis provides a finite-state abstraction,
amenable to finite-state symbolic model-checking

• less dependent on size of discrete state space

• exponential in number of clocks
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• Motivation:
Sometimes, regions seem too fine-grained

• Definition

• Examples: Zone or Not Zone

• Zone-based Reachability Analysis

• The basic algorithm.

• Building blocks:

• Post-operator,

• subsumption check

• A symbolic Post-operator

• Difference-Bounds-Matrices (DBMs)

• Discussion: Zones vs. Regions



Tell Them What You’ve Told Them. . .
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• A zone is a set of clock valuations

which can be characterised by a clock constraint.

• Each zone is a union of regions,

not every union of regions is a zone.

• There is an effectively computable
Post-operation for TA edges on zones.

• based on: time elapse, intersection, reset

• so there is a fully symbolic
decision procedure for location reachability

(if we ensure termination by widening)

• even more convenient: using DBMs

• since DBMs have a normal form

• For a given model, sometimes the region-based /
sometimes the zone-based approach is faster.

Not so many region-based tools are “on the market” these days.
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