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Recall: Restricted DC (RDC) Undecidability of Satisfiability/Realisability from 0
Fu=[P||-F |FiVFE|F;F
. . . Theorem 3.10.
where P s a state assertion with boolean observables only. The realisability from O problem for DC with continuous time is undecid-
able, not even semi-decidabl
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Theorem 3.1,
The satisfiability problem for DC with continuous time is undecidable.




Sketch: Proof of Theorem 3.10

Reduce divergence of two-counter machines to realisability from O:
ren a two-counter machine M with final state ¢,

» construct a DC formula F(M) := encoding(M)

o such that

M diverges ifandonlyif the DCformula
F(M) A =0lqzin]

is realisable from O.

ity from O was (semi-)decidable,
divergence of two-counter machines would be (which it isn't).

Tm
2CM Configurations and Computations
« aconfiguration of M isa triple K = (¢,n1,n2) € Q x o x No
« The transition relation “+" on configurations is defined as follows:
Command | Semantics: K - K
qimeriq @ nu.n2) F (dm1 + L)
q:decy i q" (q,0,n2) F (¢, 0,n2)
(¢.m1 +1,m2) F (¢". 11, m2)
q: (g n1,n2) F (¢ n1,nz + 1)
qa: (g:n1,0) F (¢/,m1,0)
(g;n1,n2 + 1)+ (¢", n1,na)
« The (1) computation of M is a finite sequence of the form ("M halts")
Ko = (@0,0,0) F K1 & Kz b - F (qan,n1,n2)
ite sequence of the form (“M diverges”)

Ko =(q0.,0,0) - K1 = Ka .

Two-Counter Machines

8n
2CM Example
* M= (Q,q0, 4fin: Prog)
« commands of the form g : inc, : ¢’ and ¢ : dec; : ¢'.q". i € {1,2}
« configuration K = (q,ny,n2) € @ x INg x No
Command | Semantics: K+ K
g incr (@1, ma) (¢ + Lg)
q: deey : q'.q" (@.0,m2) F (¢/,0,m2)
. (g.m +1,ma) F (¢, m,mz)
Irines  q @, ma)F (¢, 2 + 1)
q: dees: q'oq" (,m,0) - (¢/,11,0)
(g:n1,m3 + 1) (g, 71, m2)
Ut oA
© Q={q0.q1,qpin} o Q= {q0qn} 2
o Prog— ﬁE @ iines g} | o Prog={qgo: incs: qo}
3 [2]
(4,0.0) ® N@PD\DV
e &
(3..7,0) (4,.02.7)
( e (5. 65 )
2,0) % 02
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[adit

Recall: Two-counter machines

A two-counter machine is a structure
M =(Q,90. 4fin, Prog)

where

» Qis afinite set of states,

« comprising the initial state ¢y and the final state g5;,

o Prog is the machine program, i.e. a finite set of commands of the form

q:inci:q" and q:dec;:q.q", ie{1,2}

4G4, gohg! g if (4=0)
g2 RS R, g e goo g/

* We assume deterministic 2CM: for each ¢ € Q, at most one command starts in ¢,
and g5, is the only state where no command starts.

Reduction to 2-CM: Idea



Reducing Divergence to DC realisability: Idea In Pictures

2CM M diverges F(M) intuitively specifies:
-  [0,d] encodes (g, 0.,0),
) . e each[n-d.(n+1)-d
existsm: Ko - Ky k... encodes a configuration,

-d,(n+1)-d)and
(n+1)-d (n+2)-d
exists interpretation are in --relation,
5

1T o .
o if gz, is reached, we stay there

d 24 3d  4d Time

“Z describes 7"
and
T Fo F(M) A =0[ggin]

Encoding Configurations — Tbs ¢2

» We use Obs = {obs} with
D(obs) = Qum M_ {C1.05, B, X}.

\rQ‘?xQ

Examples:

:

Reducing Divergence to DC realisability: Idea

G.v,2]

”

« Asingle configuration /& of M can be encoded in an interval of length 4;
being an encoding interval can be characterised by a DC formula.

 Aninterpretation on ‘Time' encodes the computation of M if

« eachinterval [4n, 4(n + 1)}, n € INy, encodes a configuration K,

« each two subsequent intervals
[4n.4(n+ 1)]and [4(n + 1), 4(n + 2)],n € Ny,
encode configurations K, - K, 11 in transition relation.

» Being an encoding of the run can be characterised by a DC formula F(M).

» Then M diverges if and only if F(M) A ~0[gy, ] is realisable from O.

Encoding Configurations e
o O Crmplog, O G pon
* We use Obs = {obs} with B _— _—
D(obs) = Qi U {C1,Cy, B, X}. N —_
q
i
Examples: ! 1 2 3 1Time
o K=(q.2,3)
[q] B X1
A H A
(=1 -
* Ko = (q0,0,0)

[0 [B] [x7 [B]
A X S Y R Y A
=1 =1 L= =1

or, using abbreviations, [¢o]"; [B]"; [X]": [B]".

Encoding Configurations

Formula Construction for Given 2-CM




Construction of F(M)

In the following, we give DC formulae describing

« theinitial configuration: init,

o the general form of configurations: keep,

« the transitions between configurations: F(q :}incy/: ¢') and F(q : dec; : ¢'),

o the handling of the final state.

F(M) is the conjunction of all the:
F(M) = init A keep A ...
A N Flaiine:q)

q:inc;:q’ € Prog
A N Flg:deci:q)

BN
q:deci:q’' € Prog

: ¢ (Increment)

(i) Change state
O([q]" s [BVCi1 5 [X]': [BV ol il =4 = ¢

=4;[q" s true)

Initial and General Configurations

init = (0 >4 = [qo]':[B]": X5 [B]": true)

keep = O([Q1": [BV C1 1" [X]' 5 [BVCo]' 50 =4)
= (=4 1QI BV T X [BY G
where Q := ~(X v C, vy V B).

Q1 [Bve (X1 [BVG
um R , , ,

=1 =1 =1 =1 =4
=
Q1  [Bval  [X] [BVCi]
' =4 it =1 =1 e=1 ,v
19/
. - q . 3
q: : ¢’ (Increment) e
(i) Change state
O(fq]" s [BV T s [XTH5 BV Col' s =4 = £=45[q'T" s true)
fq] Bvend X1 [BvCal
o
=1 =1 =1 =1 =4
= [ true
=4 =1 v
(ii) Increment counter
VdeO([q]" s [B1: (=0V[C]:[~X]); [X]'5[BV o] st =4
— (=4;[¢1 5 (B [C)3 [BI AL =d); true
— TR
0 Bl e=ovfcili[-x1)" X1 [BvCal
<Q.DA, t t t t t 1
=1 =d =1 =1 =4
= \ fal [B1:[Ci1:[B] true v

2m

Auxiliary Formula Pattern copy

fpronly shk aswrons

copy(F\{Pr,..., Py}) =
f,?uﬁ?iu%:w,<,:<§iue;m£u®
= Nun;i;w_c
S
Ve deO(FAL=c); ([PLV---VPAL=d);[P,]:il=4
= (=c+d+4;[P,]

F [PLv-V Pyl [P
t=c t=d N S (=4
= T -
' f=c+d+4
20
ey ¢ ¢ (Increment)
(i) Keep rest of first counter
copy([q]': [B /Rj i[Ci].{B,C1})
+ &R RS
(ii) Leave second counter unchanged
copy([q]"s [BV C11; [X]', {B, C2})
22



q : deci : ¢, q" (Decrement)

( _:maf
R
O(Tq1 : [B1': [X1' 5 [BV Gl s 0 =4 = £=4;[¢'1":[B]": true)
US4 s
[—
Decrement counter b= —

A
VdeO([q]": ([B];[Ci1AL=d); [B]:[BVCi]:[X]':[BVCa]'i0=4
= (=4;[¢"1":[B]"; true)

(iii) Keep rest of first counter

copy([q]* s [B

$ (O3B, {B, C1})

(iv) Leave second counter unchanged

copy([q]' s [BV C115 [X]',{B,C2})

23m

Satisfiability

« Following Chaochen and Hansen (2004) we can observe that

M halts if and only if the DC formula F'(M) A [, ] is satisfiable.
This yields

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecidable.

(Itis semi-decidable.)

» Furthermore, by taking the contraposition, we see

M diverges ifandonlyif M does not halt
andonlyif F(M) A =0[qgn] is not satisfiable.

» Thus whether a DC formula is not satisfiable is not decidable,
not even semi-decidable.

Final State

copy([an]" s [BV Ci1'; [X1: [BV C2]' {gpin, B, X, C1,Ca})
-

z

By \\7\%&

#
Flat) =00, 1
B raball . O

Validity

» By Remark 2.13, F is valid iff — " is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is un-
decidable, not even semi-decidable.

 This provides us with an alternative proof of Theorem 2.23 (“there is no sound and
complete proof system for DC”):
© Suppose there were such a calculus C.

« By Lemma 2.22 it is semi-decidable
whether a given DC formula F is a theorem in C.

« By the soundness and completeness of C,

Fisatheoremin C if and only if Fis valid.

« Thusit is semi-decidable whether F is valid. Contradiction.

27m

Satisfiability / Valididty

Discussion

Fu=[P]|~F |FVE | FiiFy [ (=1|(=z|Vee R,

P astate assertion, x a global variable.

Formulae used in the reduction are abbreviations:
(=4 = (=1;l=1;0=1;{=1
>4 <= (=4;true
l=z+y+d < (=x;l=y;{=4

o Length 1 is not necessary — we can use / = z instead, with fresh z.

 Thisis RDC augmented by “¢ = 2" and “¥ 2",
which we denote by RDC + ¢ = z, V.

28/
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Tell Them What You've Told Them. ..

o For Restricted DC plus ¢ = z and V1
in continuous time:

ty is undecidable.
o Proof idea: reduce to halting problem of
two-counter machines.

» For full DC, it doesn't get better.
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