-2-2017-10-19 - main -

-2-2017-10-19 - main -

Real-Time Systems

Lecture 2: Timed Behaviour

2017-10-19

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Necessary Ingredients (ii)

o
]

To develop software that is (provably) correct wrt. its requirements, we need:

(i) a formal model of software behaviour

(i) alanguage* to specifiy requirements on behaviour,
(to distinguish desired from undesired behaviour),

(iii) a language* to specify behaviour of design ideas,

(iv) a notion of correctness
(a relation between requirements and design specifications),

(v) and a method to verify (or prove) correctness
(that a given pair of requirements and design specifications are in correctness relation).

«: at best concisely and conveniently, with adequate expressive power.

6/49

2/31

-2-2017-10-19 - Scontent -

-2-2017-10-19 - main -

Content

A formal model of real-time behaviour

o state variables (or observables)
o evolution over time (or behaviour)

e discrete time vs.
continous (or dense) time

Timing diagrams

Formalising requirements

o with available tools:
logic and analysis

e concise? convenient?

Correctness of designs wrt. requirements

Classes of timed properties

o safety and liveness properties
o bounded response and duration properties

o An outlook to Duration Calculus

A Formal Model of Real-Time Behaviour

331

4/31

State Variables (or Observables)

-2-2017-10-19 - Smod

We assume that the real-time systems we consider are characterised
by a finite (!) set of state variables (or observables)

obsy,...,0bs,

each associated with a set D(0bs;), the domain of obs;, 1 < i < n.)

Mé
e(

Example: gas burner

ignition

Scus

Haw 7/’“*"‘3

o G Requst

5731

State Variables (or Observables)

-2-2017-10-19 - Smodk

We assume that the real-time systems we consider are characterised
by a finite (!) set of state variables (or observables)

obsy,...,0bs,

each associated with a set D(0bs;), the domain of obs;, 1 < i < n.

Example: gas burner

ignition i

G, D(G)={0,1} - domain value 0 for G models “valve closed” (value 1: “valve open”)
(shorthand notation: G : {0,1})

F : {0,1} - domain value 0 models “no flame sensed” (value 1: “flame sensed”)
I :{0,1} — domain value 0 models “ignition device disabled” (value 1: “ignition enabled”)

H : {0,1} - domain value 0 models “no heating request sensed” (value 1: “heating request’)
5731

Levels of Detail

~2-2017-10-19 - Smodk

We can describe a real-time system at various levels of detail
by choosing an appropriate domain for each observable.

For example,

e if we need to model a gas valve with different positions
(not only “open” and “closed”), we could use

G :{0,1,2} (0: “fully closed’, 1: “half-open’, 2: “fully open’)

(Note: domains are never continuous in the lecture, otherwise it's a hybrid system!)

o if the thermostat (sending heating requests) and the gas burner controller
are connected via a bus and exchange messages from Msg, use

B : Msg*

to model gas burner controllers receive buffer as a finite sequence of messages from Msg.
e etc

e Choice of observables and their domain is

A choice is good if it conveniently serves the modelling purpose.

System Evolution over Time

o One possible evolution (over time), or: behaviour, of the considered real-time
system is represented as a function

7 : Time — D(0bsy) X --- X D(0bsy).

where Time is the time domain (— in a minute).

o If (and only if) observable obs; has value d; € D(obs;) attimet € Time, 1 < i <mn,
we set

ﬂ_(t) = (dla"'adn)'

e For convenience, we use
obs; : Time — D(obs;)

to denote the projection of 7 onto the i-th component.

6731

7731

What’s the time?

~2-2017-10-19 - Smodel -

e There are two main choices for the time domain Time:

e discrete time: Time = INy, the set of natural numbers.

e continuous
or dense time: Time = R{, the set of non-negative real numbers.

o Throughout the lecture we shall use the continuous time model and consider
discrete time as a special case.

Because
o plant models usually live in continuous time,

e we avoid too early introduction introduction of hardware considerations,

o Interesting view: continous-time is a well-suited abstraction from the
discrete-time realms induced by clock-cycles etc.

8/31

Example: Gas Burner

-2-2017-10-19 - Smodel -

gas valve
flame sensor
An evolution over time of the considered real-time
system is represented as function b e -
JE—— . \\\\\\‘
7 : Time — D(obs1) X - -+ X D(0bsy)
ignition

with w(¢) = (di,...,d») if (and only if) observable
obs; has value d; € D(obs;) attimet € Time, 1 <
7 < n.

For convenience: use obs; : Time — D(obs;).

< T,
)
+

o
/l\r/LL): (/’//11 O,/))
GCg)=nEN2=1

T, L FHE)= A
" 7
0 — .
1 - L
G : i
0 :
1 - - |
I
0 <
F : ' :
0 .
]
f -
me
1

931

Example: Gas Burner

gas valve
flame sensor
An evolution over time of the considered real-time
system is represented as function i e -
JE— " ——
7 : Time — D(obs1) X - -+ X D(0bsy)
ignition

with 7(¢t) = (di,...,d») if (and only if) observable
obs; has value d; € D(obs;) attimet € Time, 1 <
1 < n.

For convenience: use obs; : Time — D(obs;).

heating requested valve opened L
- re-try ignition flame gone
try ignition
/ / ignition fail ignition success valve closed

([

H

o = o =

\
‘\\1\\\

Time

931

More Examples: Gas Burner Evolutions — ﬂg

LM

Time

One ignition failure, success, flame failure. No heating request, no heating.

il [V-
Vo= % SN
HO
G1
Time

Reliable ignition, stable flame. Spontaneous flame, without request.

2

°
S

10/31

Representing Evolutions: Timing Diagram

-2-2017-10-19 - Smodel -

-2-2017-10-19 - Scontent -

o An evolution (of a state variable) can be displayed in form of a timing diagram.

) observable Y-axis label (may be omitted)
e Forinstance,
domain value
X: D(X)
] = —
dy

X(2)

for X : {dl, dg}

¢ Multiple observables can be combined into a single timing diagram:

o = o= o =

e

Content

o A formal model of real-time behaviour

o state variables (or observables)
o evolution over time (or behaviour

e discrete time vs.
continous (or dense) time

Timing diagrams

Formalising requirements

o with available tools:
logic and analysis

e concise? convenient?
o Correctness of designs wrt. requirements

o Classes of timed properties

o safety and liveness properties
e bounded response and duration properties

e An outlook to Duration Calculus

Time

11731

12731

-2-2017-10-19 - main -

-2-2017-10-19 - main -

1-2017-1017 - Si

Necessary Ingredients (jj) (iii) (iv)

To develop software that is (provably) correct wrt. its requirements, we need:

(i) aformal model of software behaviour }

(i) alanguage* to specifiy requirements on behaviour,
(to distinguish desired from undesired behaviour),

(iii) a language* to specify behaviour of design ideas,

(iv) a notion of correctness
(a relation between requirements and design specifications),

(v) and a method to verify (or prove) correctness
(that a given pair of requirements and design specifications are in correctness relation).

*: at best concisely and conveniently, with adequate expressive power.

6/49

Formalising Requirements:
A First Approach with Available Tools

13731

14/31

Requirements, More Formally

2-2017-10-19 - Sprop

o Arequirement ‘Req’is a set of system behaviours (over observables) with the
pragmatics that,

o adesign or implementation is correct wrt. ‘Req’
e if and only if all observed behaviours (off +#-< a(mjg # dpl)
e lie within the set ‘Req’.
o More formally,
e Req C (Time — D(0bs1) x --- x D(obs,))
(‘Req’ is the set of allowed evolutions),

o let
Des C (Time — D(o0bs1) X - -+ x D(0bsy,))

be the behaviours of a design or implementation;
o ‘Des’is correct wrt. ‘Req’ if and only if Des C Req.

¢ Inconvenient:
‘Req’ is usually an infinite set — we need ways to describe ‘Req’ conveniently.

15731

Available Tools: Logic and Analysis

2-2017-10-19 - Sprop

o Arequirement on gas burner controller behaviours could be

“do not ignite if the valve is closed”.

e Thus, a design ‘Des’ is correct if
o forall evolutions 7 € Des,
o forall points in time ¢ € Time,

e itis not the case that /(¢) = 1 and G(t) = 0.
(Recall: () is the projection of 7 (t) on the I-component.)

Lke © o .
e We can already formalise the above regiirement using a logical formula:

F:=Vte Timee(I(t)=1AG(t)=0).

e ThenReq = {n: Time - D(H) x D(G) x D(I) x D(F) | 7 = F}.

e In the following, we may identify a requirement and a logical formulae which
defines the requirement. We say “requirement 7"

IAW: predicate logic formula F' serves as concise description of requirement ‘Req’

16/31

Example: Gas Burner

-2-2017-10-19 - Sprop -

gas valve
flame sensor

Req <= Vt € Time e =(I(t) A =G(t)) —
— s e
7 € Req? — T
fl\r, Z_é B t_‘f = - (T(’é) A7 6('6}) ignition i
ka2 (T¢E) A 6L)
=0 =0
& f«
T S)
H |
0 I .
1] : -
GU : .
1] ! = -
I Il Elf
0 o '
|
1 \ I
F | '
0— ;
i I Time
2 4,
Vv v
Correctness

-2-2017-10-19 - Sprop -

o Let ‘Req be a requirement,
e ‘Des’ be a design, and
e ‘Impl”be an implementation.

Recall: each is a set of evolutions, i.e. a subset of (Time — xI_; D(obs;)).

We say

o ‘Des’is a correct design (wrt. ‘Req’) if and only if

Des C Req.

e ‘Impl’is a correct implementation (wrt. ‘Des’ (or ‘Req)) if and only if

Impl C Des (or Impl C Req)

If ‘Req’ and ‘Des’ are described by formulae of first-oder predicate logic,

proving the design correct amounts to proving validity of

}\; Des = Req.

A~

17731

18/31

-2-2017-10-19 - Scontent -

-2-2017-10-19 - main -

Content

A formal model of real-time behaviour

o state variables (or observables)
o evolution over time (or behaviour

e discrete time vs.
continous (or dense) time

Timing diagrams

Formalising requirements

o with available tools:
logic and analysis \/

e concise? convenient?

Correctness of designs wrt. requirements

Classes of timed properties

o safety and liveness properties
o bounded response and duration properties

o An outlook to Duration Calculus

19731

Classes of Timed Properties

20731

Safety Properties

» A safety property states that
something bad must never happen [Lamport].

o Example: “do not ignite if the valve is closed”
Req :=Vt € Time e =(I(t) A =G(t)).

is a safety property.

o In general, a safety property is characterised as a property
that can be falsified in bounded time:

o If a gas burner controller does not satisfy ‘Req,
there is an evolution 7 and a time ¢t € Time such that

—(I(t) A =G(1))

does not hold. All later times ¢ > ¢ do not make it better.

o But safety is not everything...

-2-2017-10-19

2173

Liveness Properties

o The simplest form of a liveness property states that

something good eventually does happen.

o Example: “heating requests are finally served”

vt € Timeeo (H(t) A=F(t) = (3t > teG(th AI(H))

N HE&) =1
is a liveness property.

Note: a gas burner controller can guarantee that finally the valve is opened and
ignition is enabled - but a flame cannot be guaranteed.

o Note: liveness properties not falsified in finite time.

o if there is a heating request at time ¢, and at time ¢’ > ¢, the controller did not
enforce G(t) A I(t), there may be a later time ¢ > ¢’ where the formula holds.

o With real-time systems, liveness is too weak...

22/31

Bounded Response Properties

-2-2017-10-19

Lﬁ"‘ ead

o A bounded response property states that \,g
al [b, e].

the desired reaction on an input occurs in time interv.

e Example: heating requests are served within 3 seconds +¢

Vie Timeo (HE)A-F(t) = (3t €[t+3s—c,t+3s+¢] e G) A I(H))
s S
is a bounded liveness property.

Here, theintervalis [b,e] = [t +3s —¢,t +3s+¢];
it depends on the time ¢ of the heating request.

o This property can again be falsified in finite time.

o With gas burners, this is still not everything...

2331

By the Way: Convenience

It is not so easy to read out
“Heating requests are served within 3 seconds +¢

from (lengthy) formula

Vie Timee (H(t)A—-F(t) = (3t' € [t+3s—c,t+3s+¢c]e G AN I(H)).

The Duration Calculus formula
([HA=F];true) N[-(GAI)]) = 3—e<{<3+¢ ﬁ

is more concise (fewer symbols),

and considered easier to read out by some.
N N~ —

— in a week.

24/3

Duration Properties

-2-2017-10-19 - Sclasses -

o A duration property states that
o for observation interval [b, e] characterised by a condition A(b, e),
e the accumulated time

o in which the system is in a certain critical state characterised by condition C(t)
e has an upper bound (b,). ?/‘K‘QW"“‘" ’“’%J“/

S

Vb, e € Timeeo A(ZD) =>(/be C(t) dt)g u(b, e)

e Example: leakage in gas burner,
“At most 5% of any at least 60s long interval amounts to leakage.”

Vb,e € Timee (b<eA (e—b)>60) :>(/e G(t) AN —F(t) d9§(0.05 (e — b))
— b

-

is a duration property. Albe) (ce) “be)

25/31

Duration Properties

~2-2017-10-19 -

o A duration property states that
o for observation interval [b, e] characterised by a condition A(b, e),
e the accumulated time

o in which the system is in a certain critical state characterised by condition C(t)

e has an upper bound (b, e). Ricrzusn /n@Jq/
- 2

Vbe € Timee A(ED) — /EC(t) dt < u(b,e)
b

e Example: leakage in gas burner,
“At most 5% of any at least 60s long interval amounts to leakage.”

Vbe € Timee (b<eA(e—b)>60) = / G{t)AN=F(t)dt <0.05- (e —b)
b B

is a duration property. y

o This property can again be falsified in finite time. &

25/31

-2-2017-10-19 - main -

An Outlook to Duration Calculus (DC)

26/31

~2-2017-10-19 - Sdcpreview -

Duration Calculus: Preview e[] .
g ete Al ensor
o Duration Calculus is an interval logic. N s ==
e Formulae are evaluated in an iitin i

(implicitly given) interval.

o G,F,I,H:{0,1}
o DefineL: {0,1} as G A —F.

Strangest operators:/ [Fo]

o almost everywhere — Example: [G]
A~~~ —
(Holds in a given interval [b, e] iff the gas valve is open almost everywhere.) ¢

« chop = Example: ([I1; [I]; [~]) — €> 1 r;{f S
G

(Ignition phases last at least one time unit.) <Ll TT7 LI

G 224

_
o integral - Example: / > 60 = [L <

(At most 5% leakage time within intervals of at least 60 time units.)

27/31

-2-2017-10-19 - Scontent -

Content

A formal model of real-time behaviour

(e state variables (or observables)
(e evolution over time (or behaviour

(e discrete time vs.
continous (or dense) time

Timing diagrams

Formalising requirements

(e with available tools:
logic and analysis

(e concise? convenient?

Correctness of designs wrt. requirements

Classes of timed properties

(e safety and liveness properties
(e bounded response and duration properties

e An outlook to Duration Calculus

Tell Them What You’ve Told Them. . .

-2-2017-10-19 - Sttwytt -

Evolutions over state variables

e are a (simple but powerful) formal model
of timed behaviour, and

e can be represented by timing diagrams.
A requirements specification denotes

a set of desired behaviours.

Example classes of properties are

o safety: something bad never happens,

e liveness: something good finally happens,

e bounded response: good things happen with deadlines,

e duration: critical conditions have limited duration.
Real-time requirements can be formalised

using just logic and analysis.

But: these specifications easily become hard to read.

Something more concise and more readable (?):
Duration Calculus (— next week)

2831

2931

-2-2017-10-19 - main -

References

References

-2-2017-10-19 - main -

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

3031

313

