-21-2018-02-06 - main -

-21-2018-02-06 - Scontent -

Real-Time Systems

Lecture 21: Wrapup & Questions

2018-02-06

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Content

Lecture 20 Continued:

e Formal Methods in the Development Process
e Verification

(e Model Decomposition, Resource Consumption

e Conclusion

Lecture 21: Code Generation

Looking Back (and Forward: Exam)

Advertisements

2/42

-21-2018-02-06 - main -

The Story So Far. ..

Project, Situation, Requirements

-21-2018-02-06 - Stssf -

The Project: Wireless Fire Alarm System

)

=D
K

=
'
L
[
« Develop new communication protocol for wireless fire alarm systems (WFAS).
« Main functionality:
o self-monitoring, and
(display non-operational sensors at central i)
« alarm notification.
(display fire indications (smoke. heat. etc) at central unit)
« Timing constraints are regulated by European Norm EN 54, Part 25.

* Goal:

tisfy EN 54-25 — and have a good, robust, efficient overall product.

Requirements Validation Cont’d

Two broad directions:

« Option t: teach DC (usually not econormic).
« Option 2: serve as ranslator / medator.

\DUFAL = 7 ~DET,] = ¢ = 3005) (Detecty)

> ACIIET, £ -DISR] > £ 1005) (Display;)

e

l l
e N
electr/comm.
\ engineers
~ maybevalid
\\ 2

@

/ forbidden),
@ FM expert translates system scenario to evolution T,

@ FM expert evaluates formula on s,

@ FMexpert outcome to “allowed /

® compare expected outcome and real outcome.

Formal Methods for SME

Self-Monitoring: Sensor

E

3/42

44

Project, Situation, Requirements

-21-2018-02-06 - Stssf -

-21-2018-02-06 - Scontent -

The Project: Wireless Fire Alarm System

« Develop new communication protocol for wireless fire alarm systems (WFAS).

« Main functionality:
o self-monitoring, and

(display non-operational sensors at central unit)

« alarm notification.

(display fire indications (smoke. heat. etc) at central unit)

a A
1 [
L L

S REQUIREMENTS

ENGINEERING.
[

Wil 016)

« Timing constraints are regulated by European Norm EN 54, Part 25.

= Goal: satisfy EN 54-25 - and have a good, robust, efficient overall product.

Requirements Validation Cont’d

Two broad directions:

« Option t: teach DC (usually not econormic).

« Option 2: serve as translator / mediator.

| electr./comm.
engineers
\ may bevald
o i
@

Formal Methods for SME

Self-Monitoring: Sensor
[Self-Monitoring: Model Architecture

ooeuNG

\DUFAL = 7 ~DET,] = ¢ < 3005) (Detecty)

ACIDET, £ -DISR] > ¢ 105) (Display,)

@ FM expert translates system scenario to evolution Zs.,

@ FM expert evaluates formula on 7,

/ forbidden),

© FM expert outcome to “allowed /

© compare expected outcome and real outcome.

Content

o Lecture 20 Continued:

e Formal Methods in the Development Process

e Verification

Envi

(e Model Decomposition, Resource Consumption

e Conclusion

o Lecture 21: Code Generation
o Looking Back (and Forward: Exam)

o Advertisements

4/42

5/42

-21-2018-02-06 - main -

Verification

Formal Verification

- 21-2018-02-06 - Sverif -

MODELING

Formalized
Requirements

REQUIREMENTS
ENGINEERING

Design "
Capturing —| Modeling

/

Formal
Specifications

Detailed
Models

y Verificatiol
AN Results

Finished

Product

CERTIFICATION
AUTHORITY

Modeling &
Verification

/

dentify Abstractions
Assumptions,
Decomposition

N\
, VERIFICATION

6/42

7142

From DC Formulae to Queries: Self-Monitoring

- 21-2018-02-06 - Sverif -

e Queries:
e E<> switcher .DETECTION
sanity-check: “it is possible to detect one missing sensor”

(check with sensor switcher and with channel blocker)

e A[] not deadlock

sanity-check: no deadlock

e A[] (switcher.DETECTION imply switcher.timer <= 300*Second)
requirement: “detection takes at most 300s”

(check with sensor switcher and with channel blocker)

e A[] !'center.ERROR
requirement: “no spurious errors’

(check without sensor switcher, with channel blocker)

- 21-2018-02-06 - Sverif -

Model Decomposition B
= — \
SN

8/42

9/42

Model Decomposition

- 21-2018-02-06 - Sverif -

[
- - |
N\ SN
(:J F—=f K3 S
\\\\\
—
WSS
SN
S —_—Naa
N N
N =3 o \\
Jammer a5 \\\\\C ks N
S S 2) §
N = Y = Q\
73 =
F | 4 = \
S \%
\\\
N
F, N
/ —~
§ +=3 Outer Network @
3 3 Inner Network
G 9/42
Verification Results: Self-Monitoring
Sensors as slaves, N = 126.

Query seconds MB States explored
Detection possible 10,205.13 557.00 26,445,788
E<> switcher .DETECTION
No message collision 12,895.17 | 2,343.00 68,022,052
A[] not deadlock
Detecty 36,070.78 | 3,419.00 190,582,600
A[] (switcher .DETECTION imply switcher.timer <= 300*Second)
NoSpur. 97.44 4429 640,943
A[] !'center.ERROR

Repeaters as slaves, N = 10.

Query seconds MB States explored
Detection possible 38.21 55.67 1,250,596
E<> switcher.DETECTION
No message collision 368.58 250.91 9,600,062
A[] not deadlock
Detect 231.84 230.59 6,009,120
A[] (switcher.DETECTION imply switcher.timer <= 300*Second)
NoSpur.» 3.94 10.14 144,613
A[] !'center.ERROR

(Opteron 6174 2.2Ghz, 64GB, UPPAAL 4.1.3 (64-bit), options -s -t0 -u)

10/42

Models and Corresponding Sizes

-21-2018-02-06 - Sverif -

Model Tem- Instances Tot.al Clocks
plates Locations

Self-Monitoring:

Sensors as slaves 9 137 1040
Repeaters as slaves 9 21 82

Alarm:
One alarm 6 16 101 16
Two alarms in 2 seconds 5 16 108 12
Ten simultaneous alarms 6 25 200 15

/42

From DC Formulae to Queries: Alarm

- 21-2018-02-06 - Sverif -

e Queries:

e A[] !'Center.ALARMED imply time < 10*Second

requirement: “exactly one alarm displayed within 10 s”

e A[] (!Sensor0.DONE || !Sensor1.DONE) imply time <= 10*Second

requirement: “exactly two (simultaneous) alarms displayed within 10 s”

e A[] (!Sensor0.DONE || !'Sensor1.DONE || ... || !'Sensor9.DONE)
imply time <= 100*Second

requirement: “exactly ten (simultaneous) alarms displayed within 100 s”

12/42

Verification Results: Alarm

-21-2018-02-06 - Sverif -

s 0
T = T3 (palm tree, full collision) @f_\’\\é‘;
ids \l seconds MB States expl. ?K\Q
Alarmir | - | B86+1] 431+1 59k + 15k /O
A[] !'Center.ALARMED imply time < 10*Second ? R
Alarm27 | sequential || 4.7 | 67.1 110,207 O
A[] ('Sensor0.DONE || !Sensor1.DONE) imply time <= 10*Second
Alarm107 | sequential || 44.6 £ 11 | 311.4+102 | 641k £ 159k
optimized 41.8 £ 10 306.6 +£ 80 | 600k + 140k
A[] (!Sensor0.DONE || !Sensor1.DONE || ... || !Sensor9.DONE)
imply time <= 100*Second

T = T (palm tree, limited collision)
ids | seconds MB States expl.
Alarmiy | - 14+1] 383%1 36k + 14k
A[] !Center.ALARMED imply time < 10*Second
Alarm27 | sequential || 0.5 | 24.1 19,528
A[] ('Sensor0.DONE || !Sensorl.DONE) imply time <= 10*Second
Alarm107 | sequential 17.3+6 | 179.1+£61 | 419k £+ 124k
optimized 17.14+6 | 182.2+64 | 412k + 124k

A[] ('Sensor0.DONE || !Sensor1.DONE || ... || !Sensor9.DONE)
imply time <= 100*Second

13/42

Testing the Real System

- 21-2018-02-06 - Sverif -

Model Model Model Measured
sequential optimized test scenario Avg.
First Alarm 3.26s 2.14s 3.31s) 2.79s + 0.53s
All10 Alarms (29.03s 27.08s 29.81s) 29.65s + 3.26s

14/42

-21-2018-02-06 - Scontent -

- 21-2018-02-06 - main -

Content

e Lecture 20 Continued:
e Formal Methods in the Development Process
o Verification

(e Model Decomposition, Resource Consumption

e Conclusion

o Lecture 21: Code Generation
o Looking Back (and Forward: Exam)

o Advertisements

Conclusion

15/42

16/42

Looking Back

-21-2018-02-06 - Sconcl -

Formalized
Requirements

G Glossary

REQUIREMENTS
ENGINEERING

’

Verificatio

Results
Finished
Product

CERTIFICATION
AUTHORITY

Conclusion

- 21-2018-02-06 - Sconcl -

MODELING
Design -
Capturing —| Modeling

/

- Formal
Specifications
' Detailed
) Models
N VERIFICATION

A
Validation \

Modeling &
Verification

/

dentify Abstractions
Assumptions,
Decomposition

17/42

o Verifying “a whole system design” (i.e., every bit and detail of: car, plane, even WFAS)

can be very expensive,

gaining confidence into “the core design ideas” (or crucial aspects of the design)

can be much more feasible.

e One approach:

fix a budget (time, effort, ...),

o identify and formalise core requirements

(balance priority and budget),

o validate using positive / negative examples,

e model as far as possible, on an appropriate level of abstraction

(balance level of detail and budget),

e validate using simulation of example runs,

e verify as far as possible

(if infeasible: limit considered scenarios, at least simulate).

o Other way round: fix the goal of the formal analysis.

18/42

Conclusion from the Conclusion

-21-2018-02-06 - Scontent -

-21-2018-02-06 - Sconcl -

7

In my opinion, A
S Iy
e Everybody in this room M
(or on the “broadcast receiver” at home) Y
o has been exposed to all the knowledge and experience ? /::
o that it takes to do the WFAS project. &EM

{

What's your opinion? #-¢
Zsm
3M

Content

o Lecture 20 Continued:
e Formal Methods in the Development Process
e Verification

(e Model Decomposition, Resource Consumption

e Conclusion

o Lecture 21: Code Generation

o Looking Back (and Forward: Exam)

o Advertisements

~

19/42

2042

-21-2018-02-06 - main -

-21-2018-02-06 - Sdep -

Lecture 21: Dependency on Central Scheduling

Motivation (F A., W, et al., FAOC, 2016)

sensor TA sensor TA sensor TA

repeater TAs

repeater TAs

central unit TAs

‘1 Question:
Can't we generate the code automatically?

implement
manually

----....;

/ compile /

deploy

very regular
implementation of
location/edge
behaviour

wireless fire alarm system
219

21/

22/42

-21-2018-02-06 - Sdep -

-21-2018-02-06 - Sdep -

Code Generation from TA in the Literature

e M. Hendriks, Translating UPPAAL to not quite C, CSI-RO108, 2001.
T. Amnell, E. Fersman, P. Pettersson, W. Yi, and H. Sun, Code synthesis for TA, Nordic |C, 2002.
J. Kristensen, A. Mejlholm, and S. Pedersen, Automatic translation from UPPAAL to C, Tech. R., 2005.

K. Altisen and S. Tripakis, Implementation of TA: An issue of semantics or modeling?, FORMATS, 2005.
T. Abdellatif,]. Combaz, and |. Sifakis, Model-based implementation of RT applications, EMSOFT, 2010.
o N. Hakimipour, P. Strooper, A. Wellings, TART: TA to Real-Time Java Tool, SEFM, 2010.

M. Pajic, . Lee, R. Mangaram et al., UPP2SF: Translating UPPAAL Models to Si ech.R, 2012.

ey Ta, ?}—Hoaﬂ?()
lgenerate

code for TA; code for TA2 extra machinery

lobal scheduler,

39
The Rendezvous Transition Rule may Block Senders
Example: (sender blocked in some configurations)
o al o v o
>—0@ ©—0—0
Example: (sender never blocked)
b 2>1 a q \Cmo mml a? 2
—@ | &—©0
y<1
Another Example: (one of the senders blocked)
N lo Iy mo ’ my No [N1
7n9

23/42

244

-21-2018-02-06 - Sdep -

-21-2018-02-06 - Sdep -

Recall: Operational Semantics of Networks of TA

edge

guard action
\ /
b o l> Mo mi/ location
e "o e ‘@
I(11) I(ly) I(my) b Tma)

update invariant

location vector valuation
Operational semantics:

labelled transition relations 2+ C Conf(N) x Conf(N), Conf(N) = {(£,v) | v = I(8)}.
o (delay transition) (f,v) % (I,v +1),t € R, ifand onlyif V&' € [0,t] e v +t' = I(£).

o (local action transition) (7,v) I (¢',1'), if and only if
there is an edge e = (¢, 7, , 7, £') in A; such that (7,) Fi. e and (£, 1) = (Z, v)[e]

o (rendezvous transition) (7, v) < (' 1/}, if and only if
there is an edge eo = (£, al, i, 7, £;) in A; such that (Z V) Fioc €0, and
thereis an edge e; = (ij, 7, 05)in Aj, i # j, such that (0, 0) Fioe €1, ‘
»“and (@ V'y = (I, v)[eo; en].

6/19

Characterising “Dependency on Global Scheduler”

a. component network NV, = {A1, ..., A}
g oes no end on a global scheduler if and only if

o in each reachable configuration,

o if there is a sending edge locally enabled, then *

o there is at least one local!y/enabled receiver
in a different automaton,

» and no other sending edge
in a different automaton,

ie.

Ve € Conf (Nioe)|reach V1 < i < nVa € AVe € E(A;)|ar®clioc €
= (cFeAV1I<j<nVbe AVe € E(Aj)|lpoctiee = j=1).

13719

25/42

26/42

-21-2018-02-06 - Scontent -

- 21-2018-02-06 - main -

Content

e Lecture 20 Continued:
e Formal Methods in the Development Process
o Verification

(e Model Decomposition, Resource Consumption

e Conclusion

o Lecture 21: Code Generation

=T

o Looking Back (and Forward: Exam)

o Advertisements

Wrapup

2742

28/42

Tell Them What You’ve Told Them. . .

-21-2018-02-06 - Sttwytt -

Content
Introduction

o Observables and Evolutions o Timed Automata (TA), Uppaal

« Duration Calculus (DC) o Networks of Timed Automata

o Semantical Correctness Proofs
o DC Decidability
e DCImplementables

o Region/Zone-Abstraction
o TA model-checking
o Extended Timed Automata

o Undecidability Results
o PLC-Automata

obs : Time — @(Obs) <0b50,l/0>,t0 ﬁ) (obsl, V1>,t1 e

o Automatic Verification...
..whether a TA satisfies a DC formula, observer-based
; o Recent Results:
, o %ﬂd:&equme-ﬁagmﬂor Quasi-equal Clocks,

& or Automatic Code Generation, or ...
. 23/49

29/42

. o?
Looking Back —6©

-21-2018-02-06 - S

o Lect. 1: real-time system (vs. hybrid), o Lect. 11: timed automata (syntax / D /)
state variables @ semantics); tr. seq. / comp. path / run

Lect. 2: evolutions, timing diagrams, ®
classes of timed properties ©)

Lect. 3: DC symbols, state assertionS@
terms (syntax / semantics)

Lect. 4: DC formulae, abbreviations,
satisfiable / realisable / valid (from 0

Lect. 5: semantics-based correctness 2A
proof; real-world obstacles

Lect. 6: DC calculus; decidability
of RDC / discrete time

A
Lect. 7: undecidability
of RDC / continous time

Lect. 8: DC Implementables, standard@ -A
forms, control automata

Lect. 9: PLC:
characteristics, programming model @
RS, PRSI T TR

Lect, 10:

Lect. 12: parallel composition of TA @
(syntactical / semantical); Uppaal_ «~ 5

Lect. 13: TA location reachability, @
time-abstract system, regions

Lect. 14: zones, zone-based reachability,
’ ’ A
Difference-Bounds-Matrices ®&

Lect. 15: Extended Timed Automata >
(variables, urgent/committed)

Lect. 16: query language, evolutions vs.
transition sequences

D-C/4

Lect. 17: testability, observer construction,

untestable DC formulae 8

Lect. 18: undecidability results
for Timed Biichi Automata

FA
ct. 19:

quasi-equa s, bisimulation £-4

Lect. 20+

formal me TS in practice

30/42

Advertisements (Again)

3142

T AWUVERKIIDEMENTS
. ADVERTISEMENTS

A
VERISEy,

32s

Advertisements

e BSc. / MSc. projects (6 - 16 ECTS)
e BSc, / MSc. thesis

modelling real-time systems

extend timed automata tools

work on timed automata theory
(your (real-time) topic here)

e Student assistent jobs
e programming
e modelling

e Tutor jobs

e eg, Software Engineering in Summer 2018

— contact me

33/02

T AUVEKIIDEMENTS
. ADVERTISEMENTS

A
S

34/

-21-2018-02-06 - main -

References

References

- 21-2018-02-06 - main -

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

35/42

36/42

.
40% 20% 30% 10% 0% 0%
One LaSt Thlng rifft voll zu . ln " . - - trifft gar nicht zu

-21-2018-02-06 - Seval -

1
\ve improv

/
3 4

my capabiti

5 6
in scientific problem solving.

(Ich habe meine Fahigkeiten im wissenschaftlichen Problemlosen verbessert.)

Escecisl 3
iR

4 Te w setisfied (inv\\k},)lw\ﬂ‘\)

ii)

Because of Verification

o 8 ek
@ % T

Ll Al t

i P ﬁ“\ Aeadlock,

o (1) task (in own words), (2) solution (in full sentences), (3) correctness argument.

That’s already “half of the story’” ; -)

42/02

