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The Story So Far. ..

Project, Situation, Requirements
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The Project: Wireless Fire Alarm System
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« Develop new communication protocol for wireless fire alarm systems (WFAS).
« Main functionality:
o self-monitoring, and
(display non-operational sensors at central i)
« alarm notification.
(display fire indications (smoke. heat. etc) at central unit)
« Timing constraints are regulated by European Norm EN 54, Part 25.

* Goal:

tisfy EN 54-25 — and have a good, robust, efficient overall product.

Requirements Validation Cont’d

Two broad directions:

« Option t: teach DC (usually not econormic).
« Option 2: serve as ranslator / medator.

\DUFAL = 7 ~DET,] = ¢ = 3005) (Detecty)
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/ forbidden),
@ FM expert translates system scenario to evolution T,

@ FM expert evaluates formula on s,

@ FMexpert outcome to “allowed /

® compare expected outcome and real outcome.

Formal Methods for SME

Self-Monitoring: Sensor

E
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The Project: Wireless Fire Alarm System

« Develop new communication protocol for wireless fire alarm systems (WFAS).

« Main functionality:
o self-monitoring, and

(display non-operational sensors at central unit)

« alarm notification.

(display fire indications (smoke. heat. etc) at central unit)
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« Timing constraints are regulated by European Norm EN 54, Part 25.

= Goal: satisfy EN 54-25 - and have a good, robust, efficient overall product.

Requirements Validation Cont’d

Two broad directions:

« Option t: teach DC (usually not econormic).

« Option 2: serve as translator / mediator.
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Self-Monitoring: Sensor
[ Self-Monitoring: Model Architecture
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@ FM expert translates system scenario to evolution Zs.,
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- 21-2018-02-06 - Sverif -

MODELING

Formalized
Requirements

REQUIREMENTS
ENGINEERING

Design "
Capturing —| Modeling

/

Formal
Specifications

Detailed
Models

y Verificatiol
AN Results

Finished

Product

CERTIFICATION
AUTHORITY

Modeling &
Verification

/

dentify Abstractions
Assumptions,
Decomposition

N\
, VERIFICATION

6/42

7142



From DC Formulae to Queries: Self-Monitoring
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e Queries:
e E<> switcher .DETECTION
sanity-check: “it is possible to detect one missing sensor”

(check with sensor switcher and with channel blocker)

e A[] not deadlock

sanity-check: no deadlock

e A[] (switcher.DETECTION imply switcher.timer <= 300*Second)
requirement: “detection takes at most 300s”

(check with sensor switcher and with channel blocker)

e A[] !'center.ERROR
requirement: “no spurious errors’

(check without sensor switcher, with channel blocker)
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Model Decomposition B
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Model Decomposition
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Verification Results: Self-Monitoring
Sensors as slaves, N = 126.

Query seconds MB States explored
Detection possible 10,205.13 557.00 26,445,788
E<> switcher .DETECTION
No message collision 12,895.17 | 2,343.00 68,022,052
A[] not deadlock
Detecty 36,070.78 | 3,419.00 190,582,600
A[] (switcher .DETECTION imply switcher.timer <= 300*Second)
NoSpur. 97.44 4429 640,943
A[] !'center.ERROR

Repeaters as slaves, N = 10.

Query seconds MB States explored
Detection possible 38.21 55.67 1,250,596
E<> switcher.DETECTION
No message collision 368.58 250.91 9,600,062
A[] not deadlock
Detect 231.84 230.59 6,009,120
A[] (switcher.DETECTION imply switcher.timer <= 300*Second)
NoSpur.» 3.94 10.14 144,613
A[] !'center.ERROR

(Opteron 6174 2.2Ghz, 64GB, UPPAAL 4.1.3 (64-bit), options -s -t0 -u)
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Models and Corresponding Sizes
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Model Tem- Instances Tot.al Clocks
plates Locations

Self-Monitoring:

Sensors as slaves 9 137 1040
Repeaters as slaves 9 21 82

Alarm:
One alarm 6 16 101 16
Two alarms in 2 seconds 5 16 108 12
Ten simultaneous alarms 6 25 200 15

/42

From DC Formulae to Queries: Alarm
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e Queries:

e A[] !'Center.ALARMED imply time < 10*Second

requirement: “exactly one alarm displayed within 10 s”

e A[] (!Sensor0.DONE || !Sensor1.DONE) imply time <= 10*Second

requirement: “exactly two (simultaneous) alarms displayed within 10 s”

e A[] (!Sensor0.DONE || !'Sensor1.DONE || ... || !'Sensor9.DONE)
imply time <= 100*Second

requirement: “exactly ten (simultaneous) alarms displayed within 100 s”

12/42



Verification Results: Alarm
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s 0
T = T3 (palm tree, full collision) @f_\’\\é‘;
ids \l seconds MB States expl. ?K\Q
Alarmir | - | B86+1] 431+1 59k + 15k /O
A[] !'Center.ALARMED imply time < 10*Second ? R
Alarm27 | sequential || 4.7 | 67.1 110,207 O
A[] ('Sensor0.DONE || !Sensor1.DONE) imply time <= 10*Second
Alarm107 | sequential || 44.6 £ 11 | 311.4+102 | 641k £ 159k
optimized 41.8 £ 10 306.6 +£ 80 | 600k + 140k
A[] (!Sensor0.DONE || !Sensor1.DONE || ... || !Sensor9.DONE)
imply time <= 100*Second

T = T (palm tree, limited collision)
ids | seconds MB States expl.
Alarmiy | - 14+1 ] 383%1 36k + 14k
A[] !Center.ALARMED imply time < 10*Second
Alarm27 | sequential || 0.5 | 24.1 19,528
A[] ('Sensor0.DONE || !Sensorl.DONE) imply time <= 10*Second
Alarm107 | sequential 17.3+6 | 179.1+£61 | 419k £+ 124k
optimized 17.14+6 | 182.2+64 | 412k + 124k

A[] ('Sensor0.DONE || !Sensor1.DONE || ... || !Sensor9.DONE)
imply time <= 100*Second

13/42

Testing the Real System
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Model Model Model Measured
sequential optimized test scenario Avg.
First Alarm  3.26s 2.14s 3.31s ) 2.79s + 0.53s
All10 Alarms ( 29.03s 27.08s 29.81s) 29.65s + 3.26s
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o Verifying “a whole system design” (i.e., every bit and detail of: car, plane, even WFAS)

can be very expensive,

gaining confidence into “the core design ideas” (or crucial aspects of the design)

can be much more feasible.

e One approach:

fix a budget (time, effort, ...),

o identify and formalise core requirements

(balance priority and budget),

o validate using positive / negative examples,

e model as far as possible, on an appropriate level of abstraction

(balance level of detail and budget),

e validate using simulation of example runs,

e verify as far as possible

(if infeasible: limit considered scenarios, at least simulate).

o Other way round: fix the goal of the formal analysis.

18/42



Conclusion from the Conclusion
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7

In my opinion, A
S Iy
e Everybody in this room M
(or on the “broadcast receiver” at home) Y
o has been exposed to all the knowledge and experience ? /::
o that it takes to do the WFAS project. &EM

{

What's your opinion? #-¢
Zsm
3M
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Lecture 21: Dependency on Central Scheduling

Motivation (F A., W, et al., FAOC, 2016)

sensor TA sensor TA sensor TA

repeater TAs

repeater TAs

central unit TAs

‘1 Question:
Can't we generate the code automatically?

implement
manually

----....;

/ compile /

deploy

very regular
implementation of
location/edge
behaviour

wireless fire alarm system
219
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Code Generation from TA in the Literature

e M. Hendriks, Translating UPPAAL to not quite C, CSI-RO108, 2001.
T. Amnell, E. Fersman, P. Pettersson, W. Yi, and H. Sun, Code synthesis for TA, Nordic |C, 2002.
J. Kristensen, A. Mejlholm, and S. Pedersen, Automatic translation from UPPAAL to C, Tech. R., 2005.

K. Altisen and S. Tripakis, Implementation of TA: An issue of semantics or modeling?, FORMATS, 2005.
T. Abdellatif, ]. Combaz, and |. Sifakis, Model-based implementation of RT applications, EMSOFT, 2010.
o N. Hakimipour, P. Strooper, A. Wellings, TART: TA to Real-Time Java Tool, SEFM, 2010.

M. Pajic, . Lee, R. Mangaram et al., UPP2SF: Translating UPPAAL Models to Si ech.R, 2012.

ey Ta, ?}—Hoaﬂ?()
lgenerate

code for TA; code for TA2 extra machinery

lobal scheduler,

39
The Rendezvous Transition Rule may Block Senders
Example: (sender blocked in some configurations)
o al o v o
>—0@ ©—0—0
Example: (sender never blocked)
b 2>1 a q \Cmo mml a? 2
—@ | &—©0
y<1
Another Example: (one of the senders blocked)
N lo Iy mo ’ my No [ N1
7n9
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Recall: Operational Semantics of Networks of TA

edge

guard action
\ /
b o l> Mo mi/ location
e "o e ‘@
I(11) I(ly) I(my) b Tma)

update invariant

location vector valuation
Operational semantics:

labelled transition relations 2+ C Conf(N) x Conf(N), Conf(N) = {(£,v) | v = I(8)}.
o (delay transition) (f,v) % (I,v +1),t € R, ifand onlyif V&' € [0,t] e v +t' = I(£).

o (local action transition) (7,v) I (¢',1'), if and only if
there is an edge e = (¢, 7, , 7, £') in A; such that (7, ) Fi. e and (£, 1) = (Z, v)[e]

o (rendezvous transition) (7, v) < (' 1/}, if and only if
there is an edge eo = (£, al, i, 7, £;) in A; such that (Z V) Fioc €0, and
thereis an edge e; = (ij, 7, 05)in Aj, i # j, such that (0, 0) Fioe €1, ‘
»“and (@ V'y = (I, v)[eo; en].

6/19

Characterising “Dependency on Global Scheduler”

a. component network NV, = {A1, ..., A}
g oes no end on a global scheduler if and only if

o in each reachable configuration,

o if there is a sending edge locally enabled, then *

o there is at least one local!y/enabled receiver
in a different automaton,

» and no other sending edge
in a different automaton,

ie.

Ve € Conf (Nioe)|reach V1 < i < nVa € AVe € E(A;)|ar®clioc €
= (cFeAV1I<j<nVbe AVe € E(Aj)|lpoctiee = j=1).

13719
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1
\ve improv
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my capabiti

5 6
in scientific problem solving.

(Ich habe meine Fahigkeiten im wissenschaftlichen Problemlosen verbessert.)

Escecisl 3
iR

4 Te w setisfied (inv\\k},)lw\ﬂ‘\)

ii)

Because of Verification

o 8 ek
@ % T

Ll Al t

i P ﬁ“\ Aeadlock,

o (1) task (in own words), (2) solution (in full sentences), (3) correctness argument.

That’s already “half of the story’” ; -)
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