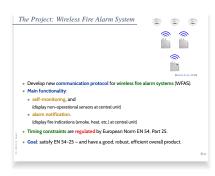
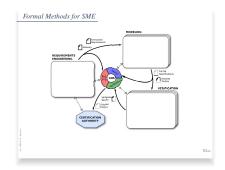
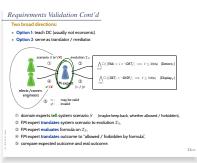
Real-Time Systems

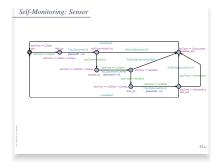
Lecture 21: Wrapup & Questions

2018-02-06

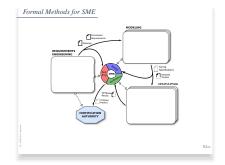

Dr. Bernd Westphal

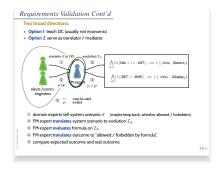

Albert-Ludwigs-Universität Freiburg, Germany

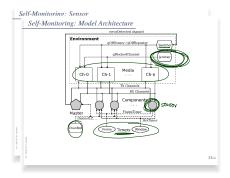

Content


- Lecture 20 Continued:
- Formal Methods in the Development Process
 Verification
 Model Decomposition, Resource Consumption
- **└**(• Conclusion
- Lecture 21: Code Generation
- Looking Back (and Forward: Exam)
- Advertisements

Project, Situation, Requirements



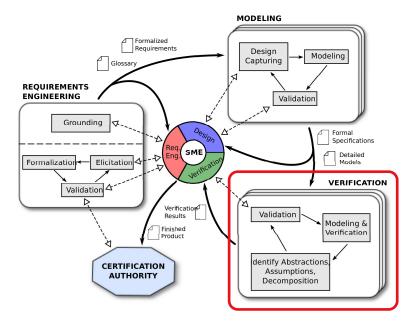



- 21 - 2018-02-06 - Stssf -

Project, Situation, Requirements

4/42

Content


- Lecture 20 Continued:
 Formal Methods in the Development Process
 Verification
 Model Decomposition, Resource Consumption
 Conclusion
- Lecture 21: Code Generation
- Looking Back (and Forward: Exam)
- Advertisements

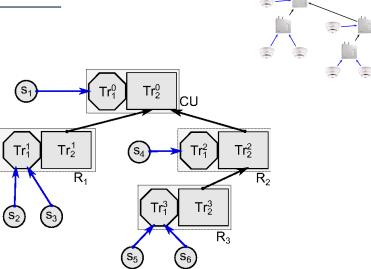
Verification

1 - 2018-02-06 - mair

6/42

Formal Verification

- 21 - 2018-02-06 - Sverif -


From DC Formulae to Queries: Self-Monitoring

Queries:


- E<> switcher.DETECTION
 sanity-check: "it is possible to detect one missing sensor"
 (check with sensor switcher and with channel blocker)
- A[] not deadlock sanity-check: no deadlock
- A[] (switcher.DETECTION imply switcher.timer <= 300*Second)
 requirement: "detection takes at most 300 s"
 (check with sensor switcher and with channel blocker)
- A[] !center.ERROR
 requirement: "no spurious errors"
 (check without sensor switcher, with channel blocker)

8/42

Model Decomposition

- 21 - 2018-02-06 - Sverif -

Verification Results: Self-Monitoring

	Sensors as slaves, $N=126$.			
Query	seconds	MB	States explored	
Detection possible	10,205.13	557.00	26,445,788	
E<> switcher.DETECTION				
No message collision	12,895.17	2,343.00	68,022,052	
A[] not deadlock				
$Detect_T$	36,070.78	3,419.00	190,582,600	
A[] (switcher.DETECTION imply switcher.timer <= 300*Second)				
$NoSpur_T$	97.44	44.29	640,943	
A[] !center.ERROR				

	Repeaters as slaves, $N=10$.			
Query	seconds	MB	States explored	
Detection possible	38.21	55.67	1,250,596	
E<> switcher.DETECTION				
No message collision	368.58	250.91	9,600,062	
A[] not deadlock				
$Detect_T$	231.84	230.59	6,009,120	
A[] (switcher.DETECTION imply switcher.timer <= 300*Second)				
$NoSpur_T$	3.94	10.14	144,613	
A[] !center.ERROR				

Model	Tem- plates	Instances	Total Locations	Clocks
Calf Manitaging				
Self-Monitoring:				
Sensors as slaves	9	137	1040	6
Repeaters as slaves	9	21	82	6
Alarm:				
One alarm	6	16	101	16
Two alarms in 2 seconds	5	16	108	12
Ten simultaneous alarms	6	25	200	15

- 2018-02-06- Sverif -

11/42

From DC Formulae to Queries: Alarm

- Queries:
 - A[] !Center.ALARMED imply time < 10*Second

 requirement: "exactly one alarm displayed within 10 s"
 - A[] (!Sensor0.DONE || !Sensor1.DONE) imply time <= 10*Second requirement: "exactly two (simultaneous) alarms displayed within 10 s"
 - A[] (!Sensor0.DONE || !Sensor1.DONE || ... || !Sensor9.DONE) imply time <= 100*Second

requirement: "exactly ten (simultaneous) alarms displayed within 100 s"

- 21 - 2018-02-06 - Sverif -

		$T=T_1$ (palm tree, full collision)				
Query	ids	seconds	MB	States expl.		
$Alarm1_T$	-	3.6 ± 1	43.1 ± 1	$59k \pm 15k$		
A[] !Center	A[] !Center.ALARMED imply time < 10*Second					
$Alarm2_T$	sequential	4.7	67.1	110,207		
A[] (!Senso	A[] (!Sensor0.DONE !Sensor1.DONE) imply time <= 10*Second					
Alarm 10_T			311.4 ± 102			
	optimized	41.8 ± 10	306.6 ± 80	$600k \pm 140k$		
A[] (!Sensor0.DONE !Sensor1.DONE !Sensor9.DONE)						
<pre>imply time <= 100*Second</pre>						

		$T=T_2$ (palm tree, limited collision)				
Query	ids	seconds	МВ	States expl.		
$Alarm1_T$	-	1.4 ± 1	38.3 ± 1	$36k \pm 14k$		
A[] !Center	A[] !Center.ALARMED imply time < 10*Second					
$Alarm2_T$	sequential	0.5	24.1	19,528		
A[] (!Sensor0.DONE !Sensor1.DONE) imply time <= 10*Second						
Alarm 10_T	sequential	17.3 ± 6	179.1 ± 61	$419k \pm 124k$		
	optimized	17.1 ± 6	182.2 ± 64	$412k \pm 124k$		
A[] (!Sensor0.DONE !Sensor1.DONE !Sensor9.DONE)						
<pre>imply time <= 100*Second</pre>						

Testing the Real System

	Model	Model	Model	Measured
	sequential	optimized	test scenario	Avg.
First Alarm	$\overbrace{3.26s}$	2.14s	<u>3.31s</u>	$2.79s \pm 0.53s$
All 10 Alarms	(29.03s)	27.08s	29.81s	$29.65s \pm 3.26s$

Lecture 20 Continued: Formal Methods in the Development Process Verification Model Decomposition, Resource Consumption Conclusion

- Lecture 21: Code Generation
- Looking Back (and Forward: Exam)
- Advertisements

Conclusion

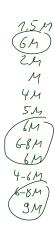
-21-2018-02-06-5

15/42

1 - 2018-02-06 - Scond

17/42

Conclusion


- Verifying "a whole system design" (i.e., every bit and detail of: car, plane, even WFAS)
 can be very expensive,
 - gaining confidence into "the core design ideas" (or crucial aspects of the design) can be much more feasible.
- One approach:
 - fix a budget (time, effort, ...),
 - identify and formalise core requirements (balance priority and budget),
 - validate using positive / negative examples,
 - model as far as possible, on an appropriate level of abstraction (balance level of detail and budget),
 - validate using simulation of example runs,
 - verify as far as possible (if infeasible: limit considered scenarios, at least simulate).
- Other way round: fix the goal of the formal analysis.

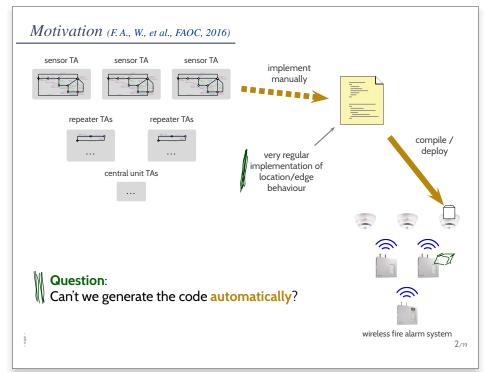
Conclusion from the Conclusion

In my opinion,

- Everybody in this room (or on the "broadcast receiver" at home)
- has been exposed to all the knowledge and experience
- that it takes to do the WFAS project.

What's your opinion?

1 - 2018-02-06 - Scood -

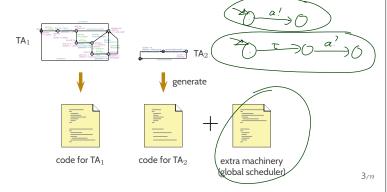

19/42

Content

- Lecture 20 Continued:
 - Formal Methods in the Development Process

 Verification

 Model Decomposition, Resource Consumption
- Lecture 21: Code Generation
- Looking Back (and Forward: Exam)
- Advertisements

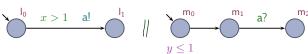


1-2018-02-06-Sdep-

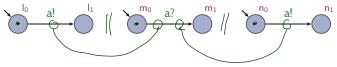
22/42

Code Generation from TA in the Literature

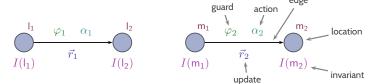
- M. Hendriks, Translating UPPAAL to not quite C, CSI-R0108, 2001.
- T. Amnell, E. Fersman, P. Pettersson, W. Yi, and H. Sun, Code synthesis for TA, Nordic JC, 2002.
- J. Kristensen, A. Mejlholm, and S. Pedersen, Automatic translation from UPPAAL to C, Tech. R., 2005.
- K. Altisen and S. Tripakis, Implementation of TA: An issue of semantics or modeling?, FORMATS, 2005.
- T. Abdellatif, J. Combaz, and J. Sifakis, Model-based implementation of RT applications, EMSOFT, 2010.
- N. Hakimipour, P. Strooper, A. Wellings, TART: TA to Real-Time Java Tool, SEFM, 2010.
- M. Pajic, I. Lee, R. Mangaram et al., UPP2SF: Translating UPPAAL Models to Simulink, Tech. R., 2012.


23/42

The Rendezvous Transition Rule may Block Senders


Example: (sender blocked in some configurations)

Example: (sender never blocked)


Another Example: (one of the senders blocked)

7/19

- 2018-02-06 - Sden -

Recall: Operational Semantics of Networks of TA

location vector valuation

Operational semantics:

labelled transition relations $\xrightarrow{\lambda} \subseteq Conf(\mathcal{N}) \times Conf(\mathcal{N}), \quad Conf(\mathcal{N}) = \{\langle \vec{\ell}, \nu \rangle \mid \nu \models I(\vec{\ell})\}.$

- (delay transition) $\langle \vec{\ell}, \nu \rangle \xrightarrow{t} \langle \vec{\ell}, \nu + t \rangle$, $t \in \mathbb{R}_0^+$, if and only if $\forall t' \in [0, t] \bullet \nu + t' \models I(\vec{\ell})$.
- (local action transition) $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell}', \nu' \rangle$, if and only if there is an edge $e = (\ell, \tau, \varphi, \vec{r}, \ell')$ in \mathcal{A}_i such that $\langle \vec{\ell}, \nu \rangle \vdash_{loc} e$ and $\langle \vec{\ell}', \nu' \rangle = \langle \vec{\ell}, \nu \rangle [e]$
- (rendezvous transition) $\langle \vec{\ell}, \nu \rangle \stackrel{a}{=} \langle \vec{\ell'}, \nu' \rangle$, if and only if there is an edge $e_0 = (\ell_i, a!, \varphi_i, \vec{r_i}, \ell'_i)$ in \mathcal{A}_i such that $\langle \vec{\ell}, \nu \rangle \vdash_{loc} e_0$, and there is an edge $e_1 = (\ell_j(a?, \varphi_j, \vec{r_j}, \ell'_j)$ in $\mathcal{A}_j, i \neq j$, such that $\langle \vec{\ell}, \nu \rangle \vdash_{loc} e_1$, and $\langle \vec{\ell'}, \nu' \rangle = \langle \vec{\ell}, \nu \rangle [e_0; e_1]$.

6/19

25/42

Characterising "Dependency on Global Scheduler"

does not depend on a global scheduler if and only if

- in each reachable configuration, 🗸
 - ullet if there is a sending edge locally enabled, then ullet
 - there is at least one locally enabled receiver in a different automaton,
 - and no other sending edge in a different automaton,

i.e.

 $\forall c \in Conf(\mathcal{N}_{loc})|_{reach} \ \forall 1 \leq i \leq n \ \forall a \in A \ \forall e \in E(\mathcal{A}_i)|_{a!} \bullet c \vdash_{loc} e$ $\implies (c \vdash e \land \forall 1 \leq j \leq n \ \forall b \in A \ \forall e' \in E(\mathcal{A}_j)|_{b!} \bullet c \vdash_{loc} e' \implies j = i).$

13/19

1-2018-02-06-Sden

- Lecture 21: Code Generation
- Looking Back (and Forward: Exam)
- Advertisements

Wrapup

- 21 - 2018 - 02 - 06 - mair

Content

Introduction

- Observables and Evolutions
- Duration Calculus (DC)
- Semantical Correctness Proofs
- DC Decidability
- DC Implementables
- PLC-Automata

$$obs: \mathsf{Time} \to \mathscr{D}(obs)$$

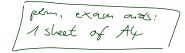
- Timed Automata (TA), Uppaal
- Networks of Timed Automata
- Region/Zone-Abstraction
- TA model-checking
- Extended Timed Automata
- Undecidability Results

$$\langle obs_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_0} \langle obs_1, \nu_1 \rangle, t_1 \dots$$

- Automatic Verification...
 - ...whether a TA satisfies a DC formula, observer-based
- Recent Results:
 - <u>/Timed Sequence Diagrams</u> or Quasi-equal Clocks, or Automatic Code Generation, or ...

23/49

29/42


Looking Back

- Lect. 3: DC symbols, state assertions, terms (syntax / semantics)
- Lect. 4: DC formulae, abbreviations, satisfiable / realisable / valid (from 0)
- Lect. 5: semantics-based correctness proof; real-world obstacles
- Lect. 6: DC calculus; decidability of RDC / discrete time
- Lect. 7: undecidability of RDC / continous time
- Lect. 9: PLC: characteristics, programming model
- Lect. 10:
 PLC automata, DC semantics

- Lect. 11: timed automata (syntax / semantics); tr. seq. / comp. path / run
- Lect. 12: parallel composition of TA (syntactical / semantical); Uppaal (- 5)
- Lect. 13: TA location reachability, time-abstract system, regions
- Lect. 14: zones, zone-based reachability,
- Lect. 15: Extended Timed Automata (variables, urgent/committed)
- Lect. 16: query language, evolutions vs. D-(/A
- Lect. 17: testability, observer construction, untestable DC formulae
- Lect. 18: undecidability results for Timed Büchi Automata
- Lect. 19: quasi-equal clocks, bisimulation 8-4
- Lect. 20:
 formal methods for RTS in practice

- 21- 2018-02-06 - Swrapup -

- 2018-02-06 - mai

31/42

* ADVERIISEMENTS *

* ADVERTISEMENTS *

ADVERTISEMENTS

ADVERTISEMENTS

ADVERTISEMENTS

ADVERTISEMENTS

11 - 2018-02-06 - Swerbung -

- BSc. / MSc. projects (6 16 ECTS)
- BSc, / MSc. thesis
 - modelling real-time systems
 - extend timed automata tools
 - work on timed automata theory
 - \(\frac{\text{your (real-time) topic here }}{\text{}}
- Student assistent jobs
 - programming
 - modelling
- Tutor jobs
 - e.g., Software Engineering in Summer 2018
- \rightarrow contact me

* ADVEKTISEMENTS *

* ADVERTISEMENTS *

ADVERTISEMENTS

ADVERTISEMENTS

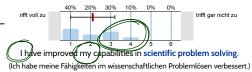
ADVERTISEMENTS

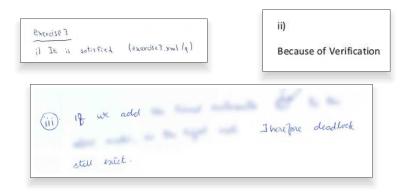
ADVERTISEMENTS

- 21 - 2018-02-06 - Swerbung

References

:1 - 2018-02-06 - mair


35/42


References

Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.

21 - 2018-02-06 - main -

• (1) task (in own words), (2) solution (in full sentences), (3) correctness argument.

That's already "half of the story": ; -)

- 2018-02-06- Seval -