
–
7

–
2

0
17

-1
1-

16
–

m
ai

n
–

Real-Time Systems

Lecture 7: DC Properties II

2017-11-16

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

–
7

–
2

0
17

-1
1-

16
–

S
co

n
te

n
t

–

2/32

• RDC +ℓ = x, ∀x in Continous Time

• Outline of the proof

• Recall: two-counter machines (2-CM)

• states and commands (syntax)

• configurations and computations (semantics)

• Encoding configurations in DC

• initial configuration of a 2-CM

• Encoding transitions in DC

• increment counter,

• decrement counter,

• and some helper formulae.

• Satisfiability and Validity

• Discussion



Decidability Results for Realisability: Overview
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Fragment Discrete Time Continous Time

RDC decidable decidable

RDC + ℓ = r decidable for r ∈ N undecidable for r ∈ R
+

RDC + ∫ P1 = ∫ P2 undecidable undecidable

RDC + ℓ = x, ∀x undecidable undecidable

DC

Decidability Results for RDC

in Continuous Time
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Recall: Restricted DC (RDC)

–
7

–
2

0
17

-1
1-

16
–

S
rd

cp
lu

s
–

5/32

F ::= ⌈P ⌉ | ¬F1 | F1 ∨ F2 | F1 ; F2

where P is a state assertion with boolean observables only.

From now on: “RDC + ℓ = x, ∀x”

F ::= ⌈P ⌉ | ¬F1 | F1 ∨ F2 | F1 ; F2 | ℓ = 1 | ℓ = x | ∀x • F1

Undecidability of Satisfiability/Realisability from 0
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Theorem 3.10.
The realisability from 0 problem for DC with continuous time is undecid-
able, not even semi-decidable.

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecidable.



Sketch: Proof of Theorem 3.10
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Reduce divergence of two-counter machines to realisability from 0:

• Given a two-counter machine M with final state qfin ,

• construct a DC formula F (M) := encoding(M)

• such that

M diverges if and only if the DC formula

F (M) ∧ ¬♦⌈qfin⌉

is realisable from 0.

• If realisability from 0 was (semi-)decidable,
divergence of two-counter machines would be (which it isn’t).

Two-Counter Machines
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Recall: Two-counter machines
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A two-counter machine is a structure

M = (Q, q0, qfin ,Prog)

where

• Q is a finite set of states,

• comprising the initial state q0 and the final state qfin

• Prog is the machine program, i.e. a finite set of commands of the form

q : inci : q
′ and q : deci : q

′, q′′, i ∈ {1, 2}.

• We assume deterministic 2CM: for each q ∈ Q, at most one command starts in q,
and qfin is the only state where no command starts.

2CM Configurations and Computations
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• a configuration of M is a triple K = (q, n1, n2) ∈ Q×N0 ×N0.

• The transition relation “⊢” on configurations is defined as follows:

Command Semantics: K ⊢K ′

q : inc1 : q′ (q, n1, n2) ⊢ (q′, n1 + 1, n2)
q : dec1 : q′, q′′ (q, 0, n2) ⊢ (q′, 0, n2)

(q, n1 + 1, n2) ⊢ (q′′, n1, n2)

q : inc2 : q′ (q, n1, n2) ⊢ (q′, n1, n2 + 1)
q : dec2 : q′, q′′ (q, n1, 0) ⊢ (q′, n1, 0)

(q, n1, n2 + 1) ⊢ (q′′, n1, n2)

• The (!) computation of M is a finite sequence of the form (“M halts”)

K0 = (q0, 0, 0) ⊢ K1 ⊢ K2 ⊢ · · · ⊢ (qfin , n1, n2)

or an infinite sequence of the form (“M diverges”)

K0 = (q0, 0, 0) ⊢ K1 ⊢ K2 ⊢ . . .



2CM Example
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• M = (Q, q0, qfin ,Prog)

• commands of the form q : inci : q
′ and q : deci : q

′, q′′, i ∈ {1, 2}

• configuration K = (q, n1, n2) ∈ Q×N0 ×N0.

•

Command Semantics: K ⊢K ′

q : inc1 : q′ (q, n1, n2) ⊢ (q′, n1 + 1, n2)
q : dec1 : q′, q′′ (q, 0, n2) ⊢ (q′, 0, n2)

(q, n1 + 1, n2) ⊢ (q′′, n1, n2)

q : inc2 : q′ (q, n1, n2) ⊢ (q′, n1, n2 + 1)
q : dec2 : q′, q′′ (q, n1, 0) ⊢ (q′, n1, 0)

(q, n1, n2 + 1) ⊢ (q′′, n1, n2)

• Q = {q0, q1, qfin}

• Prog = {q0 : inc1 : q1, q1 : inc1 : qfin}

• Q = {q0, qfin}

• Prog = {q0 : inc2 : q0}

Reduction to 2-CM: Idea
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Reducing Divergence to DC realisability: Idea In Pictures
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2CM M diverges

iff

exists π : K0 ⊢ K1 ⊢ . . .

iff

exists interpretation

Time

I

d 2d 3d 4d

“I describes π”
and

I |=0 F (M) ∧ ¬♦⌈qfin⌉

F (M) intuitively specifies:

• [0, d] encodes (q0, 0, 0),

• each [n · d, (n+ 1) · d]
encodes a configuration,

• [n · d, (n+ 1) · d] and
[(n+ 1) · d, (n+ 2) · d]
are in ⊢-relation,

• if qfin is reached, we stay there

Reducing Divergence to DC realisability: Idea
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• A single configuration K of M can be encoded in an interval of length 4;

being an encoding interval can be characterised by a DC formula.

• An interpretation on ‘Time’ encodes the computation of M if

• each interval [4n, 4(n+ 1)], n ∈ N0, encodes a configuration Kn,

• each two subsequent intervals

[4n, 4(n+ 1)] and [4(n+ 1), 4(n+ 2)], n ∈ N0,

encode configurations Kn ⊢ Kn+1 in transition relation.

• Being an encoding of the run can be characterised by a DC formula F (M).

• Then M diverges if and only if F (M) ∧ ¬♦⌈qfin⌉ is realisable from 0.



Encoding Configurations
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Encoding Configurations
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• We use Obs = {obs} with
D(obs) = QM ∪̇ {C1, C2, B,X}.

Time1 2 3 4

qfin

q

q0

X

B

C1

C2

Examples:

• K = (q, 2, 3)




⌈q⌉
∧

ℓ = 1



 ;





⌈B⌉ ; ⌈C1⌉ ; ⌈B⌉ ; ⌈C1⌉ ; ⌈B⌉
∧

ℓ = 1



 ;





⌈X⌉
∧

ℓ = 1



 ;





⌈B⌉ ; ⌈C2⌉ ; ⌈B⌉ ; ⌈C2⌉ ; ⌈B⌉ ; ⌈C2⌉ ; ⌈B⌉
∧

ℓ = 1




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• We use Obs = {obs} with
D(obs) = QM ∪̇ {C1, C2, B,X}.

Time1 2 3 4

qfin

q

q0

X

B

C1

C2

Examples:

• K = (q, 2, 3)




⌈q⌉
∧

ℓ = 1



 ;





⌈B⌉ ; ⌈C1⌉ ; ⌈B⌉ ; ⌈C1⌉ ; ⌈B⌉
∧

ℓ = 1



 ;





⌈X⌉
∧

ℓ = 1



 ;





⌈B⌉ ; ⌈C2⌉ ; ⌈B⌉ ; ⌈C2⌉ ; ⌈B⌉ ; ⌈C2⌉ ; ⌈B⌉
∧

ℓ = 1





• K0 = (q0, 0, 0)




⌈q0⌉
∧

ℓ = 1



 ;





⌈B⌉
∧

ℓ = 1



 ;





⌈X⌉
∧

ℓ = 1



 ;





⌈B⌉
∧

ℓ = 1





or, using abbreviations, ⌈q0⌉
1

; ⌈B⌉
1

; ⌈X⌉
1

; ⌈B⌉
1
.

Formula Construction for Given 2-CM
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Construction of F (M)
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In the following, we give DC formulae describing

• the initial configuration: init ,

• the general form of configurations: keep ,

• the transitions between configurations: F (q : inci : q
′) and F (q : deci : q

′),

• the handling of the final state.

F (M) is the conjunction of all these formulae:

F (M) = init ∧ keep ∧ . . .

∧
∧

q:inci:q′∈Prog

F (q : inci : q
′)

∧
∧

q:deci:q′∈Prog

F (q : deci : q
′)

Initial and General Configurations
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init :⇐⇒ (ℓ ≥ 4 =⇒ ⌈q0⌉
1 ; ⌈B⌉1 ; ⌈X⌉1 ; ⌈B⌉1 ; true)

keep :⇐⇒ �(⌈Q⌉1 ; ⌈B ∨ C1⌉
1 ; ⌈X⌉1 ; ⌈B ∨ C2⌉

1 ; ℓ = 4

=⇒ ℓ = 4 ; ⌈Q⌉1 ; ⌈B ∨ C1⌉
1 ; ⌈X⌉1 ; ⌈B ∨ C2⌉

1)

where Q := ¬(X ∨ C1 ∨ C2 ∨B).

�

( ⌈Q⌉

ℓ = 1

⌈B ∨ C1⌉

ℓ = 1

⌈X⌉

ℓ = 1

⌈B ∨ C2⌉

ℓ = 1 ℓ = 4

=⇒

ℓ = 4

⌈Q⌉

ℓ = 1

⌈B ∨ C1⌉

ℓ = 1

⌈X⌉

ℓ = 1

⌈B ∨ C2⌉

ℓ = 1

)
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copy(F, {P1, . . . , Pn}) :⇐⇒

∀ c, d •�((F ∧ ℓ = c) ; (⌈P1 ∨ · · · ∨ Pn⌉ ∧ ℓ = d) ; ⌈P1⌉ ; ℓ = 4

=⇒ ℓ = c+ d+ 4 ; ⌈P1⌉

. . .

∀ c, d •�((F ∧ ℓ = c) ; (⌈P1 ∨ · · · ∨ Pn⌉ ∧ ℓ = d) ; ⌈Pn⌉ ; ℓ = 4

=⇒ ℓ = c+ d+ 4 ; ⌈Pn⌉

�

(

F

ℓ = c

⌈P1 ∨ · · · ∨ Pn⌉

ℓ = d

⌈P1⌉

ℓ = 4

=⇒

ℓ = c+ d+ 4

⌈P1⌉
)

q : inc1 : q
′ (Increment)
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(i) Change state

�(⌈q⌉1 ; ⌈B ∨ C1⌉
1 ; ⌈X⌉1 ; ⌈B ∨ C2⌉

1 ; ℓ = 4 =⇒ ℓ = 4 ; ⌈q′⌉1 ; true)



q : inc1 : q
′ (Increment)
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(i) Change state

�(⌈q⌉1 ; ⌈B ∨ C1⌉
1 ; ⌈X⌉1 ; ⌈B ∨ C2⌉

1 ; ℓ = 4 =⇒ ℓ = 4 ; ⌈q′⌉1 ; true)

�

( ⌈q⌉

ℓ = 1

⌈B ∨ C1⌉

ℓ = 1

⌈X⌉

ℓ = 1

⌈B ∨ C2⌉

ℓ = 1 ℓ = 4

=⇒

ℓ = 4

⌈q′⌉

ℓ = 1

true
)

(ii) Increment counter

∀ d •�(⌈q⌉1 ; ⌈B⌉d ; (ℓ = 0 ∨ ⌈C1⌉ ; ⌈¬X⌉) ; ⌈X⌉1 ; ⌈B ∨ C2⌉
1 ; ℓ = 4

=⇒ ℓ = 4 ; ⌈q′⌉1 ; (⌈B⌉ ; ⌈C1⌉ ; ⌈B⌉ ∧ ℓ = d) ; true

∀ d •�

(

q

ℓ = 1

⌈B⌉

ℓ = d

ℓ = 0 ∨ ⌈C1⌉ ; ⌈¬X⌉ ⌈X⌉

ℓ = 1

⌈B ∨ C2⌉

ℓ = 1 ℓ = 4

=⇒

ℓ = 4

⌈q′⌉

ℓ = 1

⌈B⌉ ; ⌈C1⌉ ; ⌈B⌉

ℓ = d

true
)

q : inc1 : q
′ (Increment)
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(i) Keep rest of first counter

copy(⌈q⌉1 ; ⌈B ∨ C1⌉ ; ⌈C1⌉, {B,C1})

(ii) Leave second counter unchanged

copy(⌈q⌉1 ; ⌈B ∨ C1⌉ ; ⌈X⌉1, {B,C2})



q : dec1 : q
′, q′′ (Decrement)
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(i) If zero

�(⌈q⌉1 ; ⌈B⌉1 ; ⌈X⌉1 ; ⌈B ∨ C2⌉
1 ; ℓ = 4 =⇒ ℓ = 4 ; ⌈q′⌉1 ; ⌈B⌉1 ; true)

(ii) Decrement counter

∀ d •�(⌈q⌉1 ; (⌈B⌉ ; ⌈C1⌉ ∧ ℓ = d) ; ⌈B⌉ ; ⌈B ∨ C1⌉ ; ⌈X⌉1 ; ⌈B ∨ C2⌉
1 ; ℓ = 4

=⇒ ℓ = 4 ; ⌈q′′⌉1 ; ⌈B⌉d ; true)

(iii) Keep rest of first counter

copy(⌈q⌉1 ; ⌈B⌉ ; ⌈C1⌉ ; ⌈B1⌉, {B,C1})

(iv) Leave second counter unchanged

copy(⌈q⌉1 ; ⌈B ∨ C1⌉ ; ⌈X⌉1, {B,C2})

Final State
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copy(⌈qfin⌉
1 ; ⌈B ∨ C1⌉

1 ; ⌈X⌉ ; ⌈B ∨ C2⌉
1, {qfin , B,X,C1, C2})
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Satisfiability
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• Following Chaochen and Hansen (2004) we can observe that

M halts if and only if the DC formula F (M) ∧ ♦⌈qfin⌉ is satisfiable.

This yields

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecidable.

(It is semi-decidable.)

• Furthermore, by taking the contraposition, we see

M diverges if and only if M does not halt
if and only if F (M) ∧ ¬♦⌈qfin⌉ is not satisfiable.

• Thus whether a DC formula is not satisfiable is not decidable,
not even semi-decidable.
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• By Remark 2.13, F is valid iff ¬F is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is un-
decidable, not even semi-decidable.

• This provides us with an alternative proof of Theorem 2.23 (“there is no sound and
complete proof system for DC”):

• Suppose there were such a calculus C.

• By Lemma 2.22 it is semi-decidable
whether a given DC formula F is a theorem in C.

• By the soundness and completeness of C,
F is a theorem in C if and only if F is valid.

• Thus it is semi-decidable whether F is valid. Contradiction.

Discussion
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• Note: the DC fragment defined by the following grammar is sufficient for the
reduction

F ::= ⌈P ⌉ | ¬F1 | F1 ∨ F2 | F1 ; F2 | ℓ = 1 | ℓ = x | ∀x • F1,

P a state assertion, x a global variable.

• Formulae used in the reduction are abbreviations:

ℓ = 4 ⇐⇒ ℓ = 1 ; ℓ = 1 ; ℓ = 1 ; ℓ = 1

ℓ ≥ 4 ⇐⇒ ℓ = 4 ; true

ℓ = x+ y + 4 ⇐⇒ ℓ = x ; ℓ = y ; ℓ = 4

• Length 1 is not necessary — we can use ℓ = z instead, with fresh z.

• This is RDC augmented by “ℓ = x” and “∀x”,
which we denote by RDC + ℓ = x, ∀x.
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• RDC +ℓ = x, ∀x in Continous Time

• Outline of the proof

• Recall: two-counter machines (2-CM)

• states and commands (syntax)

• configurations and computations (semantics)

• Encoding configurations in DC

• initial configuration of a 2-CM

• Encoding transitions in DC

• increment counter,

• decrement counter,

• and some helper formulae.

• Satisfiability and Validity

• Discussion

Tell Them What You’ve Told Them. . .
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• For Restricted DC plus ℓ = x and ∀x

in continuous time:

• satisfiability is undecidable.

• Proof idea: reduce to halting problem of
two-counter machines.

• For full DC, it doesn’t get better.
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Introduction

• Observables and Evolutions

• Duration Calculus (DC)

• Semantical Correctness Proofs

• DC Decidability

• DC Implementables

• PLC-Automata

• Timed Automata (TA), Uppaal

• Networks of Timed Automata

• Region/Zone-Abstraction

• TA model-checking

• Extended Timed Automata

• Undecidability Results

obs : Time � D(obs) hobs0, �0i, t0
�0

�� hobs1, �1i, t1 . . .

• Automatic Verification...

...whether a TA satisfies a DC formula, observer-based

• Recent Results:

• Timed Sequence Diagrams, or Quasi-equal Clocks,
or Automatic Code Generation, or . . .
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