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Example: Stutter Filter

o Structured Text example
o Other IEC 61131-3 programming languages

e PLC Automata
o Example: Stutter Filter
e PLCA Semantics by example
e Cycle time
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Recall: Specification of a Gas Burner Controller

3/42

Gas Burner Controller: The Complete Specification
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Co i, pege, g, e

Controller: (local)

| Mv (.idle] ; true, (Init-1) < /) y )
[idle] — [idle V purge] (Seqg-1) @h 3 2304

[purge] — [purge V ignite] (Seq-2) \3& > 30

[ignite] — [ignite V burn] (Seqg-3) 6’_@

[burn] — [burn Vidle] (Seg-4) 705 "7 O3%¢
[purge] s [—purge] (Prog-1)
[ignite] 0:5he [—ignite] (Prog-2)
[—purge] ; [purge] = [purge]  (Stab-2)
[—ignite] ; [ignite] =25 [ignite]  (Stab-3)
lidle A H] - [—idle] (Syn-1)
[burn A (=H V =F)] —= [=burn] (Syn-2)
[—idle] ; [idle A=H] — [idle]  (Stab-1)
lidle A =H] —o [idle]  (Stab-1-init)

[—=burn]; [burn A H A F| — [burn]

(Stab-4)
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Gas Burner Controller: The Complete Specification
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Controller: (local)

[TV [idle] ; true, (Init-1)

[idle] — [idle V purge] (Seqg-1)
[purge] — [purge V ignite] (Seq-2)
[ignite] — [ignite V burn] (Seqg-3)
[burn] — [burn V idle] (Seq-4)
[purge] 0te [—purge] (Prog-1)
lignite] “25° [—ignite] (Prog-2)

[—purge] ; [purge] = [purge]  (Stab-2)
[—ignite] ; [ignite] =09 [ignite]  (Stab-3)
lidle A H] = [—idle] (Syn-1)
[burn A (=H V —F)] -5 [=burn] (Syn-2)
[—idle] ; [idle A =H] — [idle]  (Stab-1)
[idle A ~H| — [idle] (Stab-1-init)

[=burn]; [burn A H A F| — [burn]
(Stab-4)

Gas Valve: (output)

[TV [-G]; true (Init-4)
[G A (idle V purge)] —— [-G] (Syn-3)
[-G A (ignite V burn)] == [G]  (Syn-4)
[G]; [-G A (idle V purge)] — [~G]

(Stab-6)
[-G A (idle V purge)] —0 [-G]
(Stab-6-init)
[-G]; [G A (ignite V burn)| — [G]

(Stab-7)

Heating Request: (input)
[TV [-H]; true, (Init-2)

Flame: (input)

[TV [-F]; true, (Init-3)

[F]; [—F A —ignite] —s [~F]  (Stab-5)
|——\F/\ ﬁignite—\ —0 ’VﬁF—‘ (Stab-5-init)

Implementable Gas Burner Controller:
Correctness Proof

4/42
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Gas Burner Controller Correctness Proof
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Set GB-Ctrl := Init-1 A --- A Stab-7 A e > 0.

In the following, we show
E GB-Ctrl A A(e) = Reg-1.

where A(e) constrains the reaction time of computers executing the control program.
Read: if a program behaving like ‘GB-Ctrl" is executed on a computer
with reaction time e such that A(e) holds, then 'Req’is satisfied in the system.
Recall:
Req: <=0 >60 = 20-[L <)

and (cf. Olderog and Dierks (2008))
= Req-1 = Req
e~ ——

for the simplified requirement

Reg-1:=0(( <30 = [L<1).

oof -
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Lemma 3.15 (lidle] = [G <e¢)
A ([purge] = [G <e)

FGB-Ctrl = D ([ipguni%ce]:>€§05+i)

A ([burn] = [—F < 2¢)

Proof: Let Z be an interpretation, V a valuation, and [¢, d] an interval with Z, V, [¢, d] = GB-Ctrl.
Let [b, e] C [c,d].

e Casel:Z,V,[b,e] [ [idle]
From

[G A (idle V purge)] — [-G] (Syn-3)
[G]; [-G A (idle V purge)| — [-G] (Stab-6)

we can conclude

Z,V,[be] EO([G] = £<e)A=O([G]; [-G]; [G])

ThusZ,V, [be] = [ G < e. by (Syn-3), the valve s by (Stab-6), the valve
- closed within ¢ time units doesn't open again
when in ‘idle when in ‘idle’

o Case2:Z,V, [b,e] = [purge] Analogously to case 1.

6/42
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Lemma 3.15 Cont’d

(fidle] = |G
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A
A ([ignite] = £ < 0.5

GB-Ctrl = O
A([burn] = [—F < 2e

<eg)

[purge] = [G<e) )
+¢)
)

e Case3:Z,V, b, e] = [ignite]
From
lignite] “25° [ignite] (Prog-2)

we can directly conclude Z, V, [b,e] = £ < 0.5 + &.
[V [-F] Vv [F]

o Case4:Z,V,[b,e] E [burn] V [Fl;[-F V [~F;[F]
From v @ [F] @
[burn A (=H V =F)] == [=burn] (Syn-2)
[F]; [-F A —ignite] — [—F] (Stab-5)

we can conclude

IV, bel EO([-F] = £<e)A=O([F];[-F];[F])
by (Syn-2) by (Stab-5)
ThusZ,V, [b,e] = [ ~F < 2e.

Lemma 3.16

-9 -2017-11-28 - Sgbiproof -

= JeeGB-Ctrl = O(¢ <30 = [L<1)

Reg-1

Proof: Let Z, V, and [b, e] such that Z, V, [b, ] = GB-Ctrl A ¢ < 30.

Distinguish 5 cases:

0z 11

(i) Z,V,[b,e] = ([idle] ; true A £ < 30)
(i) Z,V, [b,e] = ([purge] ; true A £ < 30)
(iv) Z,V, b, e] = ([ignite] ; true A £ < 30)
(V) Z,V, [b,e] = ([burn] ; true A £ < 30)

8/42
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Lemma 3.16 Cont’d (lidle] = [G<e

1-28 - Sgbiproof -

-9-2017-

)

_ A ([pu JG<

315:GB-Ctrl — [ Eﬁ’gnﬁﬂ i 3
( )

e Casel(i):Z,V,[be] E[] A([burn] = [—F < 2¢
e Case(ii): Z,V, b, e] = [idle] ; true A £ < 30
From
[idle] — [idle V purge] (Seqg-1)
[—purge] ; [purge] = [purge] (Stab-2)

we can conclude
Z,V,[b,e] = [idle] Vv [idle] ; [purge]
! { \
By 3.15, J . \
V, [b, €] |:<[L§5)\/0L§E:f[/§5)
hence
V,[bel E[L <2

Thus is sufficient for Req-1 (f L < 1)

-9 -2017-11-28 - Sgbiproof -

10/42
Lemma 3.16 Cont’d N (“()fifg'g = fg s 3
3.15: GB-Ctrl — O A ([ignite] —> £ < 0.5 +¢)
A ([burn] = [—F < 2¢)
o Case (iii): Z,V, [b, e] = [burn] ; true A £ < 30
From
[burn] — [burn V idle| (Seq-4)

we can conclude

Z,V,[be] = ([bulrn] v [bu[nl ; [idle] ; true) A ¢ < 30.

| | Case (ii)
1 | [
By 3.15 and Case {ii), / [ l

) :

IV, [be] = (([ng 25)v§Lg2s);(ngs>Aeg3o.

hence
Z,V,[be] = [L < 4e.

Thus is sufficient for Req-1(f L < 1)

/42



Lemma 3.16 Cont’d (lidle] = [G<e

)
. A([purge] = [G<e¢)
315:GB-Ctrl = O A ([ignite] = £ < 0.5+ ¢)

A ([burn] = [—F < 2¢)

e Case(iv): Z,V, [b, €] = [ignite] ; true A £ < 30
From

[ignite] — [ignite V burn] (Seq-3)
we can conclude
Z,V, b, e] = ([ignite] V [ignite] ; [burn] ; true) A £ < 30.
| ([ ~——
| Case (iii)
|
By 3.15 and Case (iii), ! 0
IV, [bel = (L < 0.5+a)v(/L < 0.5+5;&L < 4?)) AL <30

hence
I,V,[be] = [ L < 0.5+ 5e.

Thus is sufficient for Req-1 (f L < 1)

12/42

Lemma 3.16 Cont’d (lidle] = [G<e
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)
. A([purge] = [G<e)
315:GB-Ctrl = O A ([ignite] = £ < 0.5+ ¢)

A ([burn] = [—F < 2¢)

e Case (V):Z,V, b, €] = [purge] ; true A £ < 30
From

[purge] — [purge V ignite] (Seq-2)
and 3.15 and Case (iv) we can conclude

Z,V,[be] = [L <05+ 6e.

Thus |e < & is sufficient for Req-1(f L < 1) ) O
Lemma 3.16.

= 3ceGB-Ctrl = O <30 = [L<1)

Req-1

13/42



Correctness Result

Theorem 3.17. .
= (GB-CtrI Ne < 12) — Req

Recall:
® Req-1=0(¢ <30 = [L <1)implies Req.
® 315: [purge] = [L <e¢, [ignite] = [L<0.5+¢, [burn] = [L <2 [idle] = [L<e.

purge ‘ ignite | burn | idle | purge
—(>30— | —£>05— —0>30—
L | / S 18
C T <30 7 T 31
© e Thus [ L < 0.5 + 6¢, 50 a sufficient reaction time constraint is A(e) := ¢ < =.
“" 14/42
Discussion
e We used only
‘Seq-1, ‘Seq-2, ‘Seq-3. ‘Seq-4,
‘Prog-2, ‘Syn-2, ‘Syn-3,
‘Stab-2, ‘Stab-5, ‘Stab-6.
What about
304+¢
Prog-1 = [purge] == [—purge]
for instance?
Gas Burner Controller: The Complete Specification
MV [~H] ; true (Init-2)
IS
; 15/42



Discussion
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e We used only
‘Seq-1, ‘Seq-2, ‘Seq-3, ‘Seq-4,
‘Prog-2, ‘Syn-2, ‘Syn-3,
‘Stab-2) ‘Stab-5, ‘Stab-6

What about
Prog-1 = [purge] 30+¢ [—purge|

for instance?

We only proved the safety property on leakage,
we did not consider the (not formalised) liveness requirement:

the controller should do something finally,

e.g. heating requests should be served finally by trying an ignition.

Content

e Correctness Proof
for the Gas Burner Implementables
[

o Now where’s the implementation?

e Programmable Logic Controllers (PLC)

(¢ How do they look like?
(e What’s special about them?
(e The read/compute/write cycle of PLC

e Example: Stutter Filter

(e Structured Text example
(e Other IEC 61131-3 programming languages

e PLC Automata
(e Example: Stutter Filter
(e PLCA Semantics by example
(e Cycle time

15/42

16/42



-9 -2017-11-28 - main -

-9 -2017-11-28 - main -

Now Where’s the Implementation?

The Plan

FullDC DCImplementables  PLC-Automata  |EC 61131-3 Binary

(Reqv

o~

prove ﬂ .-

prove \'; Impl %thesis / code generation (in the book)
properties of .. no_tr o
T oo — el
PLCA later @ notr 25

using DC
by example

st
worrect?) compiler

17/42
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The Plan

FullDC _Dcimplementabtes—PL€-Automata  |EC 61131-3 Binary

R

(Des' | \.,.PTOVe
\; "Impl' /book)

prove 2 wis / code generation

19/42

Content

e Correctness Proof
for the Gas Burner Implementables

e Now where’s the implementation?

e Programmable Logic Controllers (PLC)

e How do they look like?
o What's special about them?
o The read/compute/write cycle of PLC

e Example: Stutter Filter

o Structured Text example
o Other IEC 61131-3 programming languages

e PLC Automata

o Example: Stutter Filter
e PLCA Semantics by example
e Cycle time
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How do PLC look like?
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What is a PLC?

http://wikimedia.org (public domain)

http://wikimedia.org (CC nc-sa 2.5, ULli1105)

21/
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What’s special about PLC?
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Where are PLC employed?
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Microprocessor,

A N
remor. e
digital (or analog) 1/0O ports

possibly RS 232,
fieldbuses, networking

robust hardware

reprogrammable

standardised programming
model (IEC 61131-3)

23/42

e mostly process
automatisation

production lines
packaging lines
chemical plants
power plants

electric motors,
pneumatic or hydraulic
cylinders

e not so much: product
automatisation, there

tailored or OTS
controller boards

embedded controllers

244



How are PLC programmed?
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e PLC have in common that they operate in a cyclic manner:

—e read inputs

compute

L—e write outputs

Cyclic operation is repeated until external interruption
(such as shutdown or reset).

Cycle time: typically a few milliseconds (Lukoschus, 2004).

Programming for PLC means providing the “compute” part.
Input/output values are available via designated local variables.

How are PLC programmed, practically?

ple

-9-2017-11-28 - Sp

o Example: reliable, stutter-free train sensor.

e Assume a track-side sensor which outputs:
e no_tr - iff “no passing train”
o tr - iff “a train is passing”

e Assume that a change from “no_tr” to “tr” signals arrival of a train.
(No spurious sensor values.)

e Problem: the sensor may stutter,
i.e. oscillate between “no_tr” and “tr” multiple times.

tr — - °ooa o~

no_tr = S

25/42
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Example: Stutter Filter

o ldea: a stutter filter with outputs NV and 7', for “no train” and “train passing”
(and possibly X, for error).

no_tr

N

tr

After arrival of a train, it should ignore “no_tr" for 5 seconds.

tr — - T8 o~

no_tr —o= “ t¥—/————

4 -

°" 2742

How are PLC programmed, practically? e read inputs
1 |PROGRAM PLC_PRG_FILTER
2 | VAR
3 state : INT := O; (* 0:=N, 1:=T,
4 tmr : TP;
5 | ENDVAR
6 N
7 |IF state = O THEN
8 Jeoutput := N;
9 IF %input = tr THEN
10 state := 1;
1 Youtput := T;
12 ELSIF %input = Error THEN
13 state := 2;
14 Youtput := X;
15 ENDIF

16 | ELSIF state = 1 THEN

18 tmr( IN := TRUE, PT := t#5.0s );

19 IF (%input = no_tr AND NOT tmr.Q) THEN
20 state := O;

21 Y%output := N;

22 tmr( IN := FALSE, PT := t#0.0s );
23 ELSIF %input = Error THEN

24 state := 2;

25 Youtput := X;

26 tmr( IN := FALSE, PT := t#0.0s );
27 ENDIF

28 | ENDIF

° 28/42



How are PLC programmed, practically?

e read inputs

1 |PROGRAM PLC_PRG_FILTER
2 |VAR it tput
3| state : INT := O; (* 0:=N, 1:=T, 2:=X *) ¢ write outputs
4 tmr - TP \
5 | ENDVAR declare timer tmr o .
6 intuitive semantics:
7 |IF state = O THEN do th . "
s %output = N: o do the assignmen
9 IF %input = tr THEN o if assignment changed 1N
10 state := 1; from FALSE to TRUE (‘rising
1 %output := T; edge on IN") then set tmr to
12 ELSIF %input = Error THEN given duration
13 state := 2; (initially, I is FALSE)
14 %output := X; .
s ENDIF duration
16 | ELSIF state = 1
17
18 tmr( IN := TRUE, 'PT := t#5.0s );
19 IF (%input = no_tr AND NOT tmr.Q) THEN
20 state := O; )
2 %output := N; \
22 tn'lr-( IN := FALSE, PT := t#0.0s ); TRUE: iff tmr is
23 ELSIF %input = Error THEN still running (here: if
2 state := 2; 55 not yet elapsed)
P 25 %output := X;
f 26 tmr( IN := FALSE, PT := t#0.0s );
S 27 ENDIF
S 28 |ENDIF
B 28/42
Alternative Programming Languages by IEC 61131-3
LD x
OR y z:=x0Ry
ST z
Instruction List Structured Text
X V4
x— >1 |—=z _
y ]
S = g
(Relay) Ladder Diagram Function Block Diagram g
Figure 2.2: Implementations of the operation “z becomes y V z”J Ij—°_| step (initial)
~——— transition
—+ 91 <—— transition condition (guard)
E1 ~<— action block
INfgction2]
action name
. -+ 92 action qualifier
Tied together by
e Sequential Function Charts (SFC) [ |G g
Unfortunate: deviations T* 2
in semantics... Bauer (2003) =
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Figure 2.3: Elements of sequential function charts

29/42
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Content

e Correctness Proof
for the Gas Burner Implementables

¢ Now where’s the implementation?

e Programmable Logic Controllers (PLC)

(¢ How do they look like?
(e What’s special about them?
(e The read/compute/write cycle of PLC

e Example: Stutter Filter

(e Structured Text example
(e Other IEC 61131-3 programming languages

e PLC Automata

(e Example: Stutter Filter
(e PLCA Semantics by example
(e Cycle time

Tell Them What You’ve Told Them. . .
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e We can prove the Gas Burner jhplementables correct by care-
fully considering its phases.

e A crucial aspect is reaction time:

o Controller programs executed on some hardware platform
do not react in 0-time,

o some platforms may be too slow jg satisfy requirements.
e Programmable Logic Controllers (PLC)
are epitomic for real-time controller platforms:

o have areal-time clock device,

e can read inputs and write outputs,
e can manage local state.
e PLC programs
o are executed in read/compute/write cycles,

o have a cycle-time (possibly a watchdog).

o PLC Automata are a more abstract (than IEC 61131-3)
way of describing and studying PLC programs.

39/42
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