Real-Time Systems

Lecture 8: DC Implementables I

2017-11-23

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

DC Implementables: Motivation

Content

Introduction

« Observables and Evolutions - « TimedAutomata (TA), Uppaal

Duration Calculus (DC)
« Semantical Correctness Proofs-
+ DC Decidability
#BC Implementables
PLC-Automata
N—
o

obs : Time — 2 (obs QBs0, Vo), to 22 (obs

. >=B=s/ﬂ¢» cati :\

s a DC formula, observer-based

Region/Zone-Abstraction

Extended Timed Automata
Undecidability Results

.whethera TA s:
* Recent Results:

« Timed Sequence Diagrams, or Quasi-equal Clocks,
or Automatic Code Generation, or

Requirements vs. Implementations

« Problem: in general, a DC requirement doesn't tell how to achieve it,
how to build a controller/write a program which ensures it.

O(([~BIAL=5;[B]) = ([L=yelow]; true))
=
“whenever a pedestrian presses the button 5 time units from now,
then now the traffic lights should already be yellow

Plus: road traffic should not see ‘yellow' all the time.
O(([BAL =green] ;£ =5) = (true;[L = red]))

“whenever a pedestrian presses the button now while road traffic sees ‘green,
then 5 time units later (the latest) road traffic should see ‘red””

Content

* Motivat

: Why DC Implementables?

« What can we assume of controller platforms?

DC Standard Forms

e Followed-by, Followed-by-initially
(o (Timed) Leads-to

(e (Timed) Up-to, (Timed) Up-to-initially

 Control Automata

L. phases, basic phases

+ DCImplementables
« Initialisation, Sequencing, Progress
e Synchronisation, (Un)Bounded Stability
« (Un)Bounded Initial Stability

« Example:
A correct controller for the Gas Burner
ied by DC Implementables

Requirements vs. Implementations

 Proble
how to build a controller/write a program which ensures it.

* What a controller (clearly) can do is:

« consider inputs now,

« change (local) state, or {Cemsers J—f
pnt s
o wait, —{acators |

« setoutputs now.

(But not, e.g., consider future inputs n

 So, if we have

= aDC requirement Req’,

then
» proving correctness (still) amounts to proving =0 Impl = Req (in DC)

« and we (more or less) know how to program (the correct) Tl
ina PLC language, or in C on a real-time OS, or or or...

in general, a DC requirement doesn't tell how to achieve it,

Approach: Control Automata and DC Implementables

Plan:
« Introduce DC Standard Forms (a sub-language of DC)

« Introduce Control Automata

« Introduce DC Implementables as a subset of DC Standard Forms

« Example: a correct controller design for the notorious Gas Burner

DC Standard Forms: Followed-by

In the following: Fis a DC formula, P a state assertion, 6 a rigid term.
« Followed-by:
F — [P = =0(F; [-P]) <= O=(F;[-P])
in other symbols

VeeO((FAL=a)il>0 = (FAL=a);[P];true)

F—[P]

DC Standard Forms

e

DC Standard Forms: Followed-by Examples

TF=TF1 VaeO(FAL=2):£>0 = (FAL=2);[P]: true)

[Q1—1[P1?

DC Standard Forms: Followed-by

In the following: F'is a DC formula, P a state assertion, 6 a rigid term.
o Followed-by:
F — [P] i =0(F; [-P]) <= O-(F;[-P])
— LAY
in other symbols

5.Q®uiuhv“&uﬂ.awiusfg

[ﬂt

DC Standard Forms: Followed-by Examples

Voo O((FAL=a)il>0 = (FAL=2);[P];truc) 7

P17
Q= [@vrl o
X -

Qr

Pr

o = o =

DC Standard Forms: Followed-by Examples

FoTPT ypen((FAL=1)i0>0 = (FAL=):[P]: true)

(Jeine=1) —[P]?

DC Standard Forms: (Timed) up-to

Voo O((FAL=a)il>0 = (FAL=a);[P];truc)

o (Timed) up-to:
FE4[P] e (FALZ 0) — [P]

Q1 =5 P12

137

DC Standard Forms: (Timed) leads-to

o (Timed) leads-to:

F -2 [P] = (FAL=0) — [P]

DC Standard Forms: (Timed) up-to

VeeO(FAL=2)i£>0 = (FAL=a); [P]; true)

o (Timed) up-to:

FE5 [P e (FALZ0) — [P]

123

1373

DC Standard Forms: (Timed) leads-to

o (Timed) leads-to:

F -2 [P = (FAL=0) —> [P]

[Q] = [P]?

[

4
=

“if F* persists for (at least) § time units from time ¢,
then there is [P] after 6 + ¢”

DC Standard Forms: (Timed) up-to

Voo O((FAL=a)il>0 = (FAL=2);[P];truc)

o (Timed) up-to:

FE5 [P e (FALZ0) — [P]

&V
(@15 10]) =5 2
| —
T
Qr N ;
1 t
Fry }
| [+ |
N,w Fa e V
T

14736

DC Standard Forms: (Timed) up-to

VrzeO(FAL=x);£>0 = (FAL=2x);[P];true)

o (Timed) up-to:
F =5 [P] e (FALZ0) — [P]

N

1

!

[-Q1: [Q] = [P]?

b e

veo,
“during all @-phases of at most # time units,
there needs to be [P] as well”

Control Automata

o Let X; . X, be state variables with finite domains D(X}),

o X1,..., X together with a DC formula ‘Impl’ (over X1, ..., X})
is called system of / control automata.

« ‘Impl’is typically a conjunction of DC implementables. (— in a minute)
L~ bl var v\&ﬁi

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] —> [red V green]) A ([green] —> [green V yellow])
c=—1 "= "0

sl of 4 ool aichometan

173

DC Standard Forms: Initialisation

« (Timed) up-to-initially:
F =% [P] = (FAL<6) — [P]
o Initialisation:

[1V[P]; true
[—

1576

Control Automata

. X}, be state variables with finite domains D(X;

D(Xp).

, X}, together with a DC formula ‘Impl’ (over X1, ...,
is called system of / control automata.

« ‘Impl"is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] —> [red v green]) A ([green] —> [greenV yellow])
A ([yellow] — [yellow v red]) A ([]V [red]; true)

« Wheres the automaton? Here, look:

173

Control Automata

Control Automata

, X} be state variables with finite domains D(X,) D(Xy).

o Xp,..., X, together with a DC formula ‘Impl’ (over X1, .., X})
is called system of & control automata.

© ‘Impl'is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] — [red V green]) A ([green] — [green V yellow])
A ([yellow] — [yellow v red]) A ([]V [red]; true)

« Wheres the automaton? Here, look:
F—

Control Automata

o Let X, ..., X} be state variables with finite domains D(X}), ..., D(Xj).

o X1,..., X together with a DC formula ‘Impl (over X1, ..., X)
is called system of / control automata.

« ‘Impl’is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] — [red V green]) A ([green] —» [green V yellow])
A ([yellow] — [yellow Vred]) A ([]V [red]; true)

» Wheres the automaton? Here, look:

Control Automata

o Let Xi,..., X, be state variables with e domains D(X1),..., D(Xk).

o X1,..., X together with a DC formula ‘Impl’ (over X,
is called system of / control automata.

. Xk)

« ‘Impl’is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] —> [red V green]) A ([green] —> [green V yellow])
A (yellow] — [yellow Vred]) A ([]V [red] ; true)

» Wheres the automaton? Here, look:

173

Control Automata

o LetXy,..., X} be state variables with finite domains D(X,), ..., D(Xy).

o X1,..., X together with a DC formula ‘Impl’ (over X, ..., Xi)
is called system of control automata.

 ‘Impl"is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] — [red v green]) A ([green] —> [green V yellow])

A ([yellow] — [yellow v red]) A ([]V [red]; true)

« Wheres the automaton? Here, look:

=1 ©)

Phases

» Astate assertion of the form

X, =d;, d;€D(X,),

which constrains the values of X, is called basic m—_wmm of X;.
« Aphase of X; is a Boolean combination of basic phases of X;.
 Abbreviations:

« Write X; instead of X; = 1, if X is Boolean.
« Write d; instead of X; = d;, if D(X;) is disjoint from D(X), i # j.

Examples
« Basic phases of X: (X = green) (green] (red) (Yellow]
o Phasesof X: (X = greenV X = yellow) (greenVyellow) (red) ...

6Nt o plgse ;. (K= A B=pesed)
[dffeput &mw?,%mu

1873

Control Automata

o Let Xy,..., X}, be state variables with finite domains D(X7),..., D(X}).

o Xp,..., X, together with a DC formula ‘Impl’ (over X1, .., X})
is called system of & control automata.

« ‘Impl'is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] —» [red V green]) A ([green] —» [green V yellow])
A ([yellow] — [yellow V red]) A |V [red]; t

» Where’s the automaton? Here, look:

& ——©

DC Implementables

DC Implementable:

o ...are special patterns of DC Standard Forms (due to A.P. Ravn).
Within one pattern,

® m,m,..., T, n > 0,denote phases of the same state variable X;,
» ¢ denotes a state assertion not depending on X;
» 6 denotes a rigid term.

o Initialisation: [TV [7]; true

itially, the control automaton is in phase 7

Sequencing: [7] — [wV T V- V]

“when the control automaton is in , it subsequently stays in 7 or moves to one of .,

Progress: [N [-m]

“after the control automaton stayed in phase 7 for § time units,
subsequently leaves this phase, thus progresses”

Using DC Implementables for (Controller) Specifications

Let X1, ..., X} be asystem of i control automata.
o Let ‘Impl’ be a conjunction of DC implementables.

Then ‘Impl’ specifies / denotes all interpretations Z of X, ..., X;
and all valuations V such that Z, V |=¢ Impl

In other words: ‘Impl’ denotes the set {(Z, V) | Z,V |= Impl}
of interpretations and valuations which realise ‘Impl’ from 0.

Controller Verification:
If ‘Impl’ describes (exactly or over-approximating) the behaviour of a controller,
then proving the controller correct wrt. requirements ‘Req’ amounts to showing

k=0 Impl = Req

Controller Specification: Dear programmers,

‘Impl’ describes my design idea (and | have shown =, Impl = Req),
please provide a controller program whose behaviour is a subset of ‘Imp
that is: a correct implementation of my design.

2373

DC Implementables Cont

« Synchronisation: [r Al -2+ [-n]

“after the control automaton stayed for 6 time units in phase 7
with the condition ¢ being true, it subsequently leaves this phase”

» Bounded Stability:

[rli[mAe] <5 frvm v

V|

if the control automaton changed its phase to with the condition ¢ being true
and the time since this change does not exceed ¢ time units,
it subsequently stays in 7 or moves to one of 7,

« Unbounded Stability:

[l s [7 Al — [V Voo Vo)

if the control automaton changed its phase to 7 with the condition ¢ being true, it
subsequently stays in 7 or moves to one of 71, ..., 7"

23

Example: Gas Burner

2473

DC Implementables Cont’d

« Unbounded initial stal

ion ¢ being true
and the current time does not exceed ¢ time units,
the control automaton subsequently stays in 7 or moves to one of 71, ..., m,"

[rA@l—so[mVm V.- Vm,]

“when the control automaton initially is in phase 7 with condition > being true,
the control automaton subsequently stays in 7 or moves to one of 71, ..., m,"

Control Automata for the Gas Burner H 7

A gas burner controller can be modelled l l‘l
plant contoler
{ctomtors }

as a system of four control automata:

inputs / sensors:
o H :{0,1} - heating request
o F:{0,1} - flame sensor

plementables constraining phases of 7, F" express environment assum
H, F in controller implementables correspond to reading sensor values,

outputs / actuators:

* G :{0,1} - gasvalve

implementables constraining phases of G

describe the connection between controller states and actuators.
local state / controller:

o C': {idle, purge, ignite, burn},

to produce the desired behaviour, the controller makes use of four local states.

Gas Burner Controller: Control State Change

[TV idle] ; true
[idle] — [idle v purge]
[purge] — [purge V ignite]
[ignite] — [ignite V burn]
[burn] — [burn V idle]

.@

Gas Burner Controller: Control State Changes

(Init-1)
(Seq-1)
(Seq-2)
(Seq-3)
(Seq-4)

i C': {idle, purge, ignite, burn}

MV [idle] ; true
[idle] —> [idle V purge]
Tpurge] — [purge V ignite]
[ignite] — [ignite V burn]
[burn] —> [burn V idle]

|

2673

Gas Burner Controller: Control State Changes

idle, purge, ignite, burn}

MV [idle] ; true (Init-1)
fidle] — [idle V purge] (Seq-1)
[purge] — [purge V ignite] (Seq-2)
[ignite] — [ignite V burn] (Seqg-3)
[burn] —s [burn V idle] (Seq-4)
N
® @
2673
Gas Burner Controller: Control State Changes
i C: {idle, purge, ignite, burn}
[1V [idle] ; true (Init-1)
[idle] — [idle V purge] (Seg-1)
[purge] — [purge V ignite] (Seq-2)
ignite] — [ignite V burn] (Seq-3)
Tburn] — [burn V idle] (Seq-4)
N/ ¢
=
26136

Gas Burner Controller: Control State Changes

Y Q

purge

Q) <

i C': {idle, purge, ignite, burn} |
[1v [idle] ; true (Init-1)
fidle] —> [idle V purge] (Seq-1)
[purge] — [purge V ignite] (Seq-2)
[ignite] — [ignite V burn] (Seq-3)
[burn] — [burn V idle] (Seq-4)
- (purge
2636
Gas Burner Controller: Control State Changes
i C': {idle, purge, ignite, burn}
[TV [idle] ; true (Init-1)
[idle] — [idle v purge] (Seq-1)
[purge] — [purge V ignite] (Seq-2)
[ignite] — [ignite V burn] (Seq-3)
Tburn] — [burn V idle] (Seq-4)

Gas Burner Controller: Control State Changes

Gas Burner Controller: Timing Constraints

Gas Burner Controller: Timing Constraints

i C': {idle, purge, ignite, burn} |

[—purge] ; [purge] = [purge] (Stab-2) [—purge] ; [purge] = [purge] (Stab-2)
MV lidle] ; true (Init-1) [purge] “25 [—purge] (Prog-1) [purge] 225 [—purge] (Prog-1)
Tidle] —> [idle \/ purge] (Seq-1)
L Seq-2 “after changing to ‘purge] stay there for at least 30 time units (or: leave after 30 the earliest); “after changing to ‘purge] stay there for af 30 time units (or: leave after 30 the earl
[purge] — [purge V ignite] (Seq-2) you may stay in ‘purge’ for at most 30 + ¢ time units” you may stay in ‘purge Yor at most 30 + ¢ time units”
[ignite] — [ignite V burn] (Seq-3)
[burn] — [burn v idle] (Seq-4)

<
N

purge) <30+ ¢

O
O

2636 27
Gas Burner Controller: Timing Constraints Gas Burner Controller: Inputs Gas Burner Controller: Inputs
[~purge] ; [purge] =2 purge] (Stab-2) i
(purge] 5 [purge] (Prog-) fidle A H] -5 [—idle] (Syn-1) Tidle A H]-%+ [—idle] (Syn-1)
[burn A (=H V =F)] = [—burn] (Syn-2) [burn A (=H V =F)]—= [~burn] (Syn-2)
“after changing to .nswm M.N Mrﬂ a” at Nwwm” _“H_M%;_m M_ﬂ_ _mwuﬂ:m, 30 the earliest): [idle] ; [idle A ~H]— [idle] (Stab-1) [idle] ; [idle A ~H— [idle] (Stab-1)
you may stay in purge 3074 time uni Tidle A ~H]—p [idle] (Stab-1-init) fidle A ~H]—s, [idle] (Stab-1-init)
(ignite] s ignite] <2 igiel stebe3) [—burn] ; [burn A H A F]—s [burn] (Stab-4) [—burn] ; [burn A H A F]— [burn] (Stab-4)
—ignite] ; [ignite ignite -
[ignite] “2% [—ignite] (Prog-2)
Y ¢ N i
(= e =
AHv <g
>30
<05+
2713

2873

Gas Burner Controller: Inputs

[burn A (=H V —F)

fidle A H] -5 [

le]

» [~burn]

[idle] ; [idle A ~H]—s [idle]
Tidle A ~H]—q [idle]
[—=burn]; [burn A H A F]— [burn]

Gas Burner Controller: Inputs

[idle A H] - [—idle]
[burn A (=H V ~F)] - [—burn]
[—idle] ;

le A ~H]— [i
le A ~H]—g

idle]
dle]

[=burn]; [burn A H A F]— [burn]

(Syn-1)
(Syn-2)
(Stab-1)

(Stab-1-init)
(Stab-4)

28/

(Syn-1)
(Syn-2)
(Stab-1)

(Stab-1-init)
(Stab-4)

28/

Gas Burner Controller: Inputs

[idle A H] %5 [—idle] (Syn-1)

[burn A (=H V =F)]—= [—burn] (Syn-2)
[—idle] ; [idle A ~H|— [idle (Stab-1)

le A ~H]— [idle] (Stab-1-init)

[=burn] ; [burn A H A F]|— [burn] (Stab-4)

2873

Gas Burner Controller: Outputs

i G :{0,1}
T P

(~—~— .
[G A (idle v purge)]—» [-G] (Syn-3)
[-G A (ignite V burn)] - [G] (Syn-4)
[G]; [~G A (idle V purge) | — [~G] (Stab-6)
[=G A (idle V purge)] — [~G] (Stab-6-init)
[=G; [G A (ignite V burn)] — [G] (Stab-7)

idle V purge
<e

ignite V burn idle V purge

<e
ignite V burn

2973

Gas Burner Controller: Inputs

Tidle A H1 -5+ [~idle] (Syn-1)
Tburn A (=H V ~F)]—<5 [~burn] (Syn-2)
[—idle] ; [idle A ~H'—s [idle] (Stab-1)
[idle A —~H]— [idle] (Stab-1-init)
—burn] ; [burn A H A F]— [burn (Stab-4)
-H
2873
Gas Burner Controller: Environment Assumptions
i G:{0,1}
[1V [~G]; true (Init-4)
307

Gas Burner Controller: Environment Assumptions Gas Burner Controller: Environment Assumptions Gas Burner Controller: Environment Assumptions

i G:{0,1} | i G:{0,1} | i G:{0,1} |
[V [=G]; true (Init-4) (Init-4) [TV [=G]; true (Init-4)
idle V purge idle \ purge idle V purge
nite V burn e <e a‘ dle V purge ignite V burn e <e e‘ dle V purge ignite V burn ’° <e G‘ dle V purge
<e <e <e AN
ignite V burn ignite V burn ignite V burn
30s36 : 307 T 307
Gas Burner Controller: Environment Assumptions Gas Burner Controller: Environment Assumptions Gas Burner Controller: Environment Assumptions
i H:{0,1} i H:{0,1} i H:{0,1}
[1V [=H]; true (Init-2) [1V [~H]; true (Init-2) [1V [=H]; true (Init-2)

OB O}

31 . 3136 31

Gas Burner Controller: Environment Assumptions

i F:{0,1} |
MV [~F]; true (Init-3)
[F]: [-F A -ignite] — [—F] (Stab-5)
[=F A —ignite] —q [—F] (Stab-5-init)
3236
Gas Burner Controller: Environment Assumptions
i F:{0,1}
[V [~F]: true (Init-3)
[F]; [~F A —ignite] — [~F] (Stab-5)
[=F A —ignite] —s [—F] (Stab-5-init)
—ignite
3236

Gas Burner Controller: Environment Assumptions

Gas Burner Controller: Environment Assumptions

i F:{0,1}

[TV [=F]; true
[F7; [-F A —ignite] — [-F]
[—F A ignite] —so [~F]

© ©

Gas Burner Controller: Environment Assumptions
P

F {01}

(Init-3)

M1V [~F1; true
(Stab-5) [F; [<F A ~ignite] — [~F]
[~F A —ignite] —so [~F]

O

: The Complete Specification

i F:{0,1}

[V [=F]; true
[F]; [~F A —ignite] — [~F]
[=F A -ignite] —sg [~F]

e lo ~ignite

ignite

(Stab-5-init)
323
Gas Burner Controller.
Controller: (local)
1V [idle] ; true,

(init-3) fidle] — [idle v purge] (Seq-1)
(Stab-5) [purge] —» [purge Vignite] (Seq-2)
- ite] —> [ignite Vburn] (Seq-3)
(Stab-5-init) Tburn] —+ [burn v idle] (Seq-4)
[purge] “ [—purge] (Prog-1)
[ignite] "5 [-ignite] (Prog-2)
[—purge] ; [purge] =*3 [purge] (Stab-2)
gnite] ; [ignite] =°F [ignite] (Stab-3)
fidle A H] ~= [idle] (Syn-1)
[burn A (=H V =F)] = [=burn] (Syn-2)
[—idle] ; [idle A ~H1 — [(Stab-1)
lidle A ~H] —o [idle] (Stab-1-init)

[—burn] ; [burn A H A F] — [burn]
(Stab-4)

323

Gas Valve: (output)

[V [~G1; true

(Init-3)
(Stab-5)
(Stab-5-init)

3275

it-4)

[G A (idle v purge)] —» [=G] (Syn-3)
[=G A (ignite V burn)] =+ [G] (Syn-4)
[G]:[~G A (idle V purge)] — [~G]

(Stab-6)

[G A (idle v purge)] —so [~G]

(Stab-6-init)

[=G1: [G A (ignite V burn)] — [G]

Heating Request: (input)
MV [~H] true,
Flame: (input)

[V [~F] ; true,

(Stab-7)

-2)

(Init-3)

[F3[~F A —ignite] — [~F] (Stab-5)

[~F A —ignite] —q [~F]

(Stab-!

3373

Tell Them What You’ve Told Them. ..

Controller hardware platforms can
« read inputs, change local state,
, write outputs.

principle obstacle to implement the design.

= One such limited specification language:
+ DCImplementables,

» aset of patterns of DC Standard Forms.

« DCImplementables basically corffrai
« local state changes, synchronisation with inputs
« and outputs, timed stability and progress

o This s sufficient to formalise a correct (safe)

Gas Burner controller design specification.

3473

References

3573

References

Olderog, E.-R. and Dierks, H

Cambridge University Press.

(2008). Real-Time Systems - Formal Specification and Automatic Verification.

3673

