Real-Time Systems

Lecture 2: Timed Behaviour

2017-10-19

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

A Formal Model of Real-Time Behaviour

To develop software that is (provably) correct wrt. its requirements, we need:
(i) aformal model of software behaviour

) alanguage" to specifiy requirements on behaviour,
(to distinguish desired from undesired behaviour),

) a language® to specify behaviour of design ideas,

(iv) anotion of correctness
(arelation between requirements and design specifications).

(v) and a method to verify (or prove) correctness

State Variables (or Observables)

» We assume that the real-time systems we consider are characterised
by afinite (!) set of state variables (or observables)

obsy, ..., 0bsy,

each associated with a set D(obs;), the domain of obs;, 1 < i < n.
Pt

et

Example: gas burner

Content

A formal model of real-time behaviour

state variables (or observables)
evolution over time (or behaviour)

discrete time vs.
continous (or dense) time

« Timing diagrams

Formalising requirements

o with available tools:
logic and analysis

@ concise? convenient?

. C of designs wrt.

Classes of timed properties

o safety and liveness properties

o bounded response and duration prope

« An outlook to Duration Calculus

3Im

State Variables (or Observables)

» We assume that the real-time systems we consider are characterised
by afinite (!) set of state variables (or observables)

obsy, ..., 0bs,

each associated with a set D(obs;), the domain of obs;, 1 <i < n.

o Example: gas burner

+ G. D(G) = {0, 1} - domain value 0 for G models “valve closed” (value 1: “valve oper’)
(shorthand notation: G : {0,1})

« F: {0, 1} - domain value 0 models “no flame sensed" (value 1: “flame sensed")
o I:{0,1} - domain value 0 models “ignition device disabled" (value 1: “ignition enabled")

o H : {0,1} - domain value 0 models ‘no heating request sensed” (value 1 *heating request’)
5

Levels of Detail

We can describe a real-time system at various levels of detail
by choosing an appropriate domain for each observable.

System Evolution over Time

* One pos:
system is represented as a function

le evolution (over time), or: behaviour, of the considered real-time

What'’s the time?

 There are two m:

choices for the time domain Time:

Time = INy, the set of natural numbers.

For example, 7 : Time — D(0bsy) x -+ x D(obs,). o discrete time:

 if we need to model a gas valve with different positions

where Time is the time domain (— in a minute). * continuous

(not only “open’” and “closed”), we could use ordensetime: Time = R}, the set of non-negative real numbers.
G :{0,1,2} (0:“fully closed", 1: “half-open’ 2: “fully open’) « If (and only if) observable obs; has value d; € D(obs;) attimet € Time, 1 <i <mn,
. o we set

(Note: domains are never continuous in the lecture, otherwise its a hybrid system!) n(t) = ody). « Throughout the lecture we shall use the continuous time model and consider
« if the thermostat (sending heating requests) and the gas burner controller crete time as a special case.

are connected via a bus and exchange messages from Msg, use Because

B: Msg" « For convenience, we use « plant models usually live in continuous time,
to model gas burner controllers receive buffer as a finite sequence of messages from Msy. obs; : Time — D(obs;) « we avoid too early introduction introduction of hardware considerations,

o etc to denote the projection of 7 onto the i-th component.

» Choice of observables and their domair

Interesting view: continous-time is a well-suited abstraction from the
screte-time realms induced by clock-cycles etc.

A choice is good if it conveniently serves the modelling purpose.

Example: Gas Burner Example: Gas Burner More Examples: Gas Burner Evolutions

An evolution over time of the considered real-time
system is represented as function

7 : Time — D(obs1) x - - x D(obsn)

with 7(t) = (di,...,dy) i (and only if) observable
obs; has value d; € D(obs;) attime ¢ € Time, 1 <

An evolution over time of the considered real-time
system is represented as function

7 : Time — D(obs1) X -+ X D(obsn)

with () = (dy,...,dy) if (and only if) observable
obs; has value d; € D(obs;) attimet € Time, 1 <

i<n i<n.

For convenience: use obs; : Time — D(obs;).

For convenience: use obs; : Time — D(obs,).

" Tine

heating requested valve opened

re-try ignition flame gone No heating request, no heating.
G(¢)=n@N2=1 wyignon G greq "
AN Jimionit/ mtonscs /b
T)= T =
: ! : \ \ \
¢! ¢! ¥
0 — R — —
-
A— 1 .
o —— 1
) i
} Spontaneous flame, without request.
Time Time
N —
Ky
Y 93

Representing Evolutions: Timing Diagram

« An evolution (of a state variable) can be displayed in form of a timing diagram.

observable Y-axis label (may be omitted)

« Forinstance, \
/ domain value

X: D(X)

s - — X
& =i

for X : {dy,d>}.

« Multiple observables can be combined into a single timing diagram:

Formalising Requirements:
A First Approach with Available Tools

iz

14m

Content

« Aformal model of real-time behaviour
@ state variables (or observables)
» evolution over time (or behaviour

o discrete time vs.
continous (or dense) time

7 iming diagrams
Formalising requirements
« with available tools:
logic and analysis

o concise? convenient?

. C of designs wrt.

 Classes of timed properties
W. safety and liveness properties
» bounded response and duration properties

 An outlook to Duration Calculus

Requirements, More Formally

« Arequirement ‘Req’is a set of system behaviours (over observables) with the
pragmatics that,
« adesign or implementation is correct ﬁw ‘Req’
« ifand only if all observed behaviours (o #= g, o i)
o lie within the set ‘Req’.

More formally,
« Req C (Time — D(obs;) x -+ x D(obs,,))
(Req'is the set of allowed evolutions),
o let
Des C (Time — D(obsy) x -+ x D(obs,))
be the behaviours of a design or implementation;
« ‘Des’is correct wrt. ‘Req’if and only if Des C Req.

e Inconvenient:
‘Req’is usually an

nite set — we need ways to describe ‘Req’ conveniently.

To develop software that is (provably) correct wrt. its requirements, we need:
() aformal model of software behaviour 31,

) alanguage" to specifiy requirements on behaviour,
(to distinguish desired from undesired behaviour),

) a language” to specify behaviour of design ideas,

(iv) a notion of correctness
(arelation between requirements and design specifications),

(v) and a method to verify (or prove) correctness

» ith

13/

Available Tools: Logic and Analysis

« Arequirement on gas burner controller behaviours could be
“do not ignite if the valve is closed”.
Thus, a de:

« forall evolutions 7 € Des,

correct if

« forall points in time ¢ € Time,
not the case that I(t) = 1 and G(t) = 0.
ﬁmn:mu_ﬂgv is the projection of (t) on the I-component.)
Lke + av
irement using a logical formula:

We can already formalise the above re

Fi=Vt € Time o ~(I(t) = L A G(t) = 0).

Then Req = { : Time — D(H) x D(G) x D(I) x D(F) | 7 |= F}.

In the following, we may identify a requirement and a logical formulae which
defines the requirement. We say “requirement F".

IAW: predicate logic formula F' serves as concise description of requirement ‘Req.

16731

Example: Gas Burner Correctness

o Let Req’ be arequirement,
 ‘Des’ be a design, and

Req = vt € Time o ~(I(t) A —G(1))

7 € Req?
ar. Teptd o (T n66)) D « ‘Impl be an implementation.
L et E
b (Te)n 2 GLL)) Recall: each is a set of evolutions, i.e. a subset of (Time — xI_; D(obs;)).
L&l "I

é ‘
m [— + ‘Des'is a correct design (wrt. Req) if and only if

Des C Req.

« ‘Impl’is a correct implementation (wrt. ‘Des’ (or ‘Req)) if and only if

Impl C Des (or Impl C Req)

Time.

If ‘Req’ and ‘Des’ are described by formulae of first-oder predicate logic,
proving the design correct amounts to proving validity of

‘n Des = Req.
17 PO

Safety Properties

« Asafety property states that
something bad must never happen [Lamport].
» Example: “do not ignite if the valve is closed”
Classes of Timed Properties Req =Vt € Time ¢ =(I(t) A ~G(t)).
is a safety property.

« In general, a safety property is characterised as a property
that can be falsified in bounded time:

« If a gas burner controller does not satisfy ‘Req’
there is an evolution 7 and a time ¢ € Time such that

S(I(t) A=G(t)
does not hold. All later times ¢’ > ¢ do not make it better.

« But safety is not everything...

Content

A formal model of real-time behaviour

state variables (or observables)
evolution over time (or behaviour

discrete time vs.
continous (or dense) time

« Timing diagrams

Formalising requirements

o with available tool
logic and analysis ./

@ concise? convenient?

. C of designs wrt.

Classes of timed properties

o safety and liveness properties

o bounded response and duration prope

« An outlook to Duration Calculus

Liveness Properties

© The simplest form of a liveness property states that
something good eventually does happen.

« Example: “heating requests are finally served”

Vit e Timee (H(t) A-F(t)) = (3t > te Gt A I(t))
)

- HeE) =1

is a liveness property.

S zonm”NWWmU:_‘Jmﬂno:n_‘o:m_‘nm:m:mﬂw:nmmnrwnw:irmﬁ?m_movmsmmw:m
ignition is enabled - but a flame cannot be guaranteed.

« Note: liveness properties not falsified in finite time.

o if there is a heating request at time ¢, and at time ¢’ > ¢, the controller did not
enforce G(t) A I(t), there may be a later time t” > ¢’ where the formula holds.

« With real-time systems, liveness is too weak...

2

Bounded Response Propertie

Lo e

» Abounded response property states that J
the desired reaction on an input occurs in time interval [b, e].

» Example: heating requests are served within 3 seconds +=

Ve Times (H(t) A=F(1) = (3 €[t +3s—2,t+3s+¢| 0 G() A (1))
R

abounded

eness property.

Here, the intervalis [b,¢] = [t + 35 —&,t + 35 +¢]
it depends on the time ¢ of the heating request.

« This property can again be falsified in finite time.

» With gas burners, this is still not everything...

235
Duration Properties
» Aduration property states that
« for observation interval [b, ¢] characterised by a condition A(b,),
o the accumulated time
« in which the system s in a certain critical state characterised by condition C()
« has an upper bound u(b, Riowann inhpal
e -
VheeTimes AED) = [C(t)dt < u(b,e)
» Example: leakage in gas burner,
“At most 5% of any at least 60s long interval amounts to leakage.”
Whec Timee (b<eA(e—b)>60) — \ G(t) A=F(t) dt < 0.05- (e — b)
o5
is a duration property. F ——
o oo
« This property can again be falsified in finite time. ¢ [A Y
el Te
<
Sott) 1FE) ofe =03
N 253

By the Way: Convenience

Itis not so easy to read out
“Heating requests are served within 3 seconds 4"

from (lengthy) formula

Ve Timee (H(t) A=F(t)) = (3t' € [t+3s—e,t+3s+¢2 e G AI(H).

The Duration Calculus formula

((H A=F

ue) A[~(GAT)]) = 3—e<(<3+¢ &
is more concise (fewer symbols),
and considered easier to read out by some.

A —
— in a week.

2

An Outlook to Duration Calculus (DC)

Duration Properties

» Aduration property states that
« for observation interval [b, e] characterised by a condition A(b, e),

o the accumulated time

« in which the system is in a certain critical state characterised by condition C'(t)

« has an upper bound u(b, ¢). P infiyral”
.
Vb, € Time o A(E3) HVQ Q:Zwm ulv,e)
g

o Example: leakage in gas burner,
“At most 5% of any at least 60s long interval amounts to leakage.”

Vb,e € Times (b< e A (e~ b) > 60) ﬂ.N "6y A-F () Lvm? 05- (e~ é
(A , S0

is a duration property. Alee) (&) “lbe)

Duration Calculus: Preview

« Duration Calculus is an interval logic.

« Formulae are evaluate
(implicitly given) interval.

« G.F,IH:{0,1}
o Define L : {0,1} as G A —F.

Strangest operators: ya [#eT

o almost everywhere - Example: [G]
(Holds in a given interval [b, ¢

the gas valve is open almost everywhere)

i i
o chop - Example: ([~1];[I];[~1]) = (=1 T, [
(Ignition phases last at least one time unit.) oLt (77 (17
o . ¢ G e
o integral - Example: / > 60 — [L < 55 21

(At most 5% leakage time withi

intervals of at least 60 time ut

27m

Content

References

« Aformal model of real-time behaviour
state variables (or observables)
evolution over time (or behaviour

discrete time vs.
continous (or dense) time

o Timing diagrams

Formalising requirements

with available tools:
logic and analysis

concise? convenient?

« Correctness of designs wrt. requirements

Classes of timed properties

safety and liveness properties
bounded response and duration properties

« An outlook to Duration Calculus

Olderog, E-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

31m

Tell Them What You've Told Them. ..

« Evolutions over state variables

» are a (simple but powerful) formal model
of timed behaviour, and

» can be represented by timing diagrams.

.

Arequirements spec
asetof desired behaviours.

« Example classes of prope

» safety: something bad never happens,

iveness: something good finally happens,

« bounded response: good things happen with deadlines,

« duration: critical conditions have limited duration.
+ Real-time requirements can be formalised

using just logic and analysis.

But: these specifications easily become hard to read.

« Something more concise and more readable (?):
Duration Calculus (— next week)

References

307

