- 17 - 2018-01-18 - main -

- 17 - 2018-01-18 - main -

Real-Time Systems

Lecture 17: Automatic Verification of
DC Properties for TA 11

2018-01-18

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

~1-2017-10-17 - Snoncontent -

Content

Introduction

o Observables and Evolutions o\ Timed Automata (TA)/Uppaal

Duration Calculus (DC)
emantical Correctness Proofs
o DC Decidability
e DCImplementables

e PLC-Autol

obs : Time — Z(obs)

o Timed Sequence Diagrams, or Quasi-equal Clocks,
or Automatic Code Generation, or ...

23/49

2/29

©
5
@
g

- 17 - 2018-01-18 - main -

Content

o A satisfaction relation between timed automata
and DC formulae

o observables of timed automata
o evolution induced by computation path

o A simple and wrong solution.

o ad-hoc fix for invariants

o Testable DC Properties

o observer construction

e untestable DC properties

Model-Checking DC Properties with Uppaal

DC formula
press?
press! a press! e press!
y=0 . y=0
press? /TN press? y<2 ?
o Bt — =3 I press! FF
L T:; press! y>3 L——V\J
v I 04
A S AV — R - /-\
s 5 Tias)

e Question 1: what is the “="-relation here?

e Question 2: what kinds of DC formulae can we check with Uppaal?

o Clear: Not every DC formula.
(Otherwise contradicting undecidability results.)

e Quiteclear: F =Joff] or F = -{[light]
(Use Uppaals fragment of TCTL, something like (!) VO off.)

e Maybe: F=¢>5 = QJoff]®

e Notso clear: FF = —={([bright] ; [light])

2147

3/29

4/29

- 17 - 2018-01-18 - main -

- 17 - 2018-01-18 - main -

Observing Timed Automata

Observables of a Network of Timed Automata

Let \V be a network of n extended timed automata

Aci = (Li, Ci, By, Uy, X3, Vi, I By lini i), 1<i<n

For simplicity: assume that all Z; and V; are pairwise disjoint (otherwise rename).

r)
Definition. The observables Obs(N) of A are
{t, ..., 030 | Wi
1<i<n
with {0, .- O
e D(t;) = Ly,
e D(v) is the domain of data-variable v in A ;.
.)

24/47

529

6/29

- 17 - 2018-01-18 - main -

Example

press?

press!

bright) ||

r >3

o Observables: Obs(N) = {¢;, ¢5} with
o D(4y) = {off, light, bright}, D(¢3) ={l}. (Nodata variablesin\)

Consider computation path

€= (5,025 (ST o5 T, (lighty o5 20, (lighty 45 7, (brighty 45

and construct interpretation Z, : Obs(N) — (Time — D):

Ze(6)
bright
light —

off 1

o 1 2 3 4 5 6 7 [Time .
/47

7729

That’d be Too Easy

press?

-17 - 2018-01-18 - Staobs2 -

press? bright | | \@

>3

Consider computation path

e=(%"),02% MA (V8hty 2.5 T, (PrEItY 95 T (o) 25 20

T Obs = (Trme — &D)

Ze
bright)
light 0
OfF 1 I‘;I 1 1 1 1
o 1 21013 4 5 ¢ 7 [Time

8/29

Evolutions of TA Network

17 - 2018-01-18 - Staobs2 -

Our approach:

o Consider only those configurations assumed for more than O time units.
o Extend finite computation paths by keeping last discrete configuration.

e

.

N
Definition. Let
7 A1 e Ao - A3
£ = (lo,10),to = (b1,v1),t1 = (fa,v2),t2 = ...
be a computation path of network A/ (infinite or of length n).
Then
€: Time — Conf(N)
t — (&, v; +t —t;) where j = max{i € No | ; < t})
and((if ¢ finite) (Fn, Vp+t—t,) fort > tn)
J

Recall: £(t) used for the query language yielded the set of all configurations at ¢.

Evolutions of TA Network Cont’d

7 - 2018-01-18 - Staobs2 -

€ induces the unique interpretation
Z¢ : Obs(N) — (Time — D)

which is defined pointwise as follows:

Example:

9/29

ff 2.5, off . ¢light . ¢bright r, ¢off 1.0, ;off T
e=(q")02% (9%),25 5 ¢ ,2.5 = (%,2.5 5 (5 0,25 == (7]),35 5 ...
0 2.5 % (% ! 0 1

L
bright T
light i

o

| :
o 1 2 3 4 5 6 7 [Time

10/29

Evolutions of TA Network Cont’d

17 - 2018-01-18 - Staobs2 -

¢ induces the unique interpretation
Z¢ : Obs(N) — (Time — D)

which is defined pointwise as follows:

Example:

€= <°(‘;F>,0ﬂ> <§fg>,2.5 kN <”%ht>,2.5l> (bright>,2.5l> <°(‘)CF>,2.5 L9, <°{F>,3.5 I

x/\//’f/_/
Ze
bright
light
OfF 1 I 1 1 1 1 1 1
T l T T T T T T

o 1 2 3 4 5 6 7 [Time
10/29

Clocks in Evolutions of TA Networks

-17 - 2018-01-18 - Staobs2 -

» But what about clocks? Why not = € Obs(N) for z € X;?

¢ We would know how to define Z¢(z)(t), namely

Te(x)(t) = very(z) + (E—te(r))-

e But.. 170: x>3 xO

1129

Clocks in Evolutions of TA Networks

17 - 2018-01-18 - Staobs2 -

17 - 2018-01-18 - main

e But what about clocks? Why not z € Obs(N) for z € X;?

¢ We would know how to define Z¢(z)(t), namely

Te(x)(t) = very(z) + (E —te(r))-

e But.. Z¢(z)(t) changes too often.

Better (if needed):
e add (a finite subset of) &(X; U --- U X,,) to Obs(\),
with D(p) = {0, 1} for p € B(X; U--- U X,,).

o set ~ .
Lifv(z) = ¢,&(t) = (¢,v)

0, otherwise

Ze(p)(t) = {

The truth value of constraint ¢ may persist over non-point intervals.

Some Checkable Properties

1129

12/29

Model-Checking DC Properties with Uppaal

17 -2018-01-18 - Sdcvexa -

“For every complex problem there is an answer that is clear, simple, and wrong’”

N A
Can't we directly chec@\ 7ﬁ~ 4// c@,f r

° E/EB{FJ and F = —0[light] J_§ /:M-/—
by checking queries =
e VOLoff and 30 L.light? \@ =,
N}:m DZ_G\@:Y §”=<>§<r>s —
& 4) 2 §?:<>—; o_).\
N Eu YO Lof 1T
\7‘(:74.0/,2’

-17-2018-01-18 - Sdcvexa -

13/29
Model-Checking DC Properties with Uppaal
“For every complex problem there is an answer that is clear, simple, and wrong’”
Can't we directly check /' |= F for
o F=0[off] and F = -{[light]
by checking queries
o YOL.off and 3O L.light?
@ ©
Well, we have N = VO L.off implies F = OJoff], but not vice versa. X
2 0 25 I ° ° (o0 2::—@
€= <Oﬂ:>0_><0ﬂ:>25_><|I%ht>25_><bl’lght>25_)<Oﬂ:>25_><0ﬂ:> 3'5£>’”
v
-
L/———/J
Ze _
bright F @L/
light
OfF 1 1 1 1 1 1 1

13/29

Model-Checking Invariants with Uppaal

17 -2018-01-18 - Sdcvexa -

- 17 - 2018-01-18 - Scontent -

o Ad-hoc fix: measure duration explicitly, transform N by

z:=0
=0
00 to B
O, U
and obtain N, 14 4
Then check
N E=VO(z >0 = P)
. (z=0vP)
to verify
N EO[P].
14/29

Content

o A satisfaction relation between timed automata
and DC formulae

o observables of timed automata
o evolution induced by computation path

o A simple and wrong solution.

o ad-hoc fix for invariants

o Testable DC Properties

o observer construction

e untestable DC properties

15/29

- 17 - 2018-01-18 - main -

Testable DC Properties

-17-2018-01-18 - Sdlctest -

Testability

4 N\

Definition 6.1. A DC formula F' is called testable if an observer (or
_test automaton (or monitor)) A exists such that for all networks N =
C(Ay,..., A,) it holds that
N'ZMF iff (C(/1,...,A;,@))'zmvg—\(flp.qbad)
N~ —— ——

for some A
Otherwise F'is called untestable.

\ J

16/29

17129

Testability

17 -2018-01-18 - Sdctest -

7

Definition 6.1. A DC formula F is called testable if an observer (or
test automaton (or monitor)) Ax exists such that for all networks N/ =
C(Ay,...,A,) it holds that

N'ZF iff C(/1,~~-,A;LaAF)'ZVD_‘(AFiIbad)
for some A

Otherwise F'is called untestable.
L

N

Theorem 6.4. DC implementables are testable.

Proposition 6.3. There exist untestable DC formulae.

Testable DC Formulae

-17-2018-01-18 - Sdlctest -

17,29

Theorem 6.4. DC implementables are testable.

Initialisation: [TV [r]; true

Sequencing: [7] — [rVALV---

V |

Progress:

e Synchronisation: [7 A @] BN [—7]
« Bounded Stability: a5 [r A Q] =S [rVm Ve V]
o Unbounded Stability: [-7];[rAp]l—[rVTI V- V]
o Bounded initial stability: mAg] =50 [TVm VeV
e Unbounded initial stability: [T Ap]l—0[T VI V- Vg
Proof Sketch:

For each implementable F', construct Ap.
Prove that A is a test automaton.

18/29

Proof of Theorem 6.4: Preliminaries

17 -2018-01-18 - Sdctest -

o Note: DC does not refer to communication between TA in the network, but only to
data variables and locations.

Example: ¢([v =0]; [v=1])

e Recall: transitions of TA are only triggered by syncronisation,
not by changes of data-variables.

e Approach: have auxiliary step action. A~ A

Technically, replace each location

with

Note: the observer will consider data variables after all updates.
19/29

Proof of Theorem 6.4: Sketch

7 - 2018-01-18 - Sdctest -

o Example: [1] == [-nr] =T

true

step?, —m
step? @

20129

Counterexample Formulae

17 -2018-01-18 - Sdctest -

a)
Definition 6.5.

o A counterexample formula (CE for short) is a DC formula of the form:

true; ([mi)AL e L) ;...;([mr] AL E I); true
wherefor1 < i <k,
e m; are state assertions,

e I; are non-empty, and open, half-open, or closed time intervals of
the form

o (bye)or[be)withb € QF ande € QF U {0},
o (bye]or[be] withb,e € Q.

(b, 00) and [b, c0) denote unbounded sets.

o Let F' be a DC formula. A DC formula F¢ is called counterexample
formula for F' if = F < —(F¢g) holds. y

Theorem 6.7. CE formulae are testable.

Untestable DC Formulae

7 - 2018-01-18 - Sdctest -

Constiain D/'ag\mw

A
) T

ag&wf"/»aq{/‘ S — 1

J [B] WU
BF-————- —+ - —_———————— —

cowwéw.wfé

CF-———————— +————~rf———+——4

£

—

“Whenever we observe a change from A to —A at time ¢ 4,
the system has to produce a change from B to =B at some time tg € [ta,ta + 1]anda
change from C to ~C attime tp + 1.”

=\
Sketch of Proof: Assume there uch that, for all networks A/, we have
NEF iff CAL,..., A, Ar) EVO-(Ar.qpad)

Assume the number of clocks in Ar isn € INg.

21729

2229

Untestable DC Formulae Cont’d

17 - 2018-01-18 - Sdctest -

Consider the following time points:
(] tA =1

o tpi=tat g fori=1... n+1

o to€ltp+1— g ts + 1+ g [fori=1,...,n+1

4(n+1)>
with s —th #1for1 <i<n+1.

Example: n =3

Bz

Cr

(= = =R

Untestable DC Formulae Cont’d

17 - 2018-01-18 - Sdctest -

Consider the following time points:
o ty:=1

o th ::tA+%fom'=1,...,n+1

143

o to €ty +1— iy tp H 1+ [fori=1,...,n+1

4(n+1)>
withtl —th #1for1 <i<n+1.

Example: n = 3
—

Az

W%
3
Wy

B

1

0

1
A

0

1
Cr

0

Time

23,29

23,29

A —-A

17 - 2018-01-18 - Sdctest -

Untestable DC Formulae Cont’d Ape- oo
B Fr————- Y ————— 4

@
Example:n =3 Jo) S i A S

Az

Bz

Cr

(=R = =

0 1ty & B ol 2 £ i3 Time

o The shown interpretation Z satisfies the assumption of the property.

e Ithasn + 1 candidates to satisfy the commitment.

o By choice of £, the commitment is not satisfied; so I is not satisfied.

e Because A is a test automaton for F, is has a computation path to gpqq-

o Because n = 3, Ar can not save all n + 1 time points t.
e Thus thereis 1 < ip < n such that all clocks of A have a valuation which is not in
! 1 1
2-tg+ (_4(n+1)) 4(n+1))

24/29

17 - 2018-01-18 - Sdctest -

A —-A
Untestable DC Formulae Cont’d 4 Gr
B pFr-————- B e e
Example:n =3 Cfprmmmmmn tomTT e

Az

Bz

(=R =

Cr

e Because Ar is a test automaton for F, is has a computation path to gpqq-
o Thusthereis 1 < 79 < n such that all clocks of A have a valuation which is not in
3 1 1
215 + 1y 3
 Modify the computation to Z’ such that 9 := 9 + 1.
e ThenZ' = F,but Ap reaches gyqq via the same path.

o Thatis: Ar claimsZ' j= F.
e Thus Ar is not a test automaton. Contradiction.

25129

- 17 - 2018-01-18 - Scontent -

Content

o A satisfaction relation between timed automata
and DC formulae

(e observables of timed automata
(e evolution induced by computation path

o A simple and wrong solution.

(e ad-hoc fix for invariants

o Testable DC Properties

(e observer construction

(e untestable DC properties

26/29

Tell Them What You’ve Told Them. . .

- 17 - 2018-01-18 - Sttwytt -

|

e For testable DC formulae F', we can automatically verify
whether a network satisfies F'.

e by constructing an observer automaton

¢ and transforming " appropriately.

e There are untestable DC formulae.

(Everything else would be surprising.)

2729

17 -2018-01-18 - main -

References

References

- 17 - 2018-01-18 - main -

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

28/29

29/29

