
Prof. Dr. Andreas Podelski
Tanja Schindler

Hand in until November 28th, 2018
15:59 via the post boxes

Discussion: December 3rd/4th, 2018

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 6

The goal of this sheet is to train your understanding of different synchronization and commu-

nication mechanisms in Cyber-Physical Systems. You have already worked on communication

via shared variables on the last sheet; the exercises on this sheet deal with synchronization via

handshaking and with synchronization via communication over channels.

Exercise 1: Traffic Lights
The goal of this exercise is to train your ability to model a system where the processes syn-

chronize via handshaking. This exercise also serves as a warm-up for the second exercise. The

situation in the second exercise will be more complicated, because there, we take into account a

controller.

Consider the crossing of two roads with four
traffic lights as depicted on the right. The two
traffic lights labelled with TL1 always show the
same color, and likewise the two traffic lights
labelled with TL2 always show the same color.
The traffic lights have three modes: red,
yellow, and green, and they switch from green

to yellow, from yellow to red, and from red

to green.

TL1

TL1TL2

TL2

(a) Create two transition systems TS 1 and TS 2 for the traffic lights, one for each
direction of a crossing.

Insert suitable actions on which these system can synchronize so that at least one
of the lights are in the red mode in each state of the transition system TS 1‖TS 2.

(b) Compute the transition system TS 1‖TS 2. Is the system safe? An informal argu-
ment is sufficient.

Exercise 2: Railroad Crossing
In the lecture you have already seen a railroad crossing system. That system was wrong. Now

you are going to design a correct system. In the lecture, we also mentioned another wrong

railroad crossing system where the error appeared only in the situation where we had two trains.

This is why here we take into account two tracks.

In this exercise we build a model for the controller of a railroad crossing. Our railroad
crossing has one gate and two train tracks, one track for each direction.
The transition system of the gate has two states and the following graph structure.

1

up down

The transition systems of the train tracks have three states. In the first state all trains
on this track are far away, in the second state one train is approaching, in the third state
one train is in the railroad crossing and no other train is approaching on this track. The
transition systems of the train tracks have the following graph structure.

Track 1: far1 appr1

in1

Track 2: far2 appr2

in2

Describe a controller (in the form of a transition system) that controls the gate such that
whenever a train is in the railroad crossing (state in1 or state in2),the gate is down (state
down). Your controller may temporarily stop a train in the sense that a train may only
move from appri to ini if the controller agrees.
Complete the transition system descriptions of train tracks and gate by adding suitable
actions to the graphs given above.
The system should have the property that every train can pass the gate eventually and
that the gate is not always down. Hence, e.g., the trivial controller that just stops every
train or the trivial controller the keeps the gate down are not valid solutions here.

Exercise 3: Modeling a Channel System
The goal of this exercise is to train your abilities to model a Cyber-Physical system where the

components use channels for the communication.

Consider the following leader election algorithm:
For n ∈ N, n processes P1, . . . , Pn are located in a ring topology where each process
is connected by an unidirectional channel to its neighbor in a clockwise manner. To
distinguish the processes, each process is assigned a unique identifier id ∈ {1, . . . , n}.
The aim is to elect the process with the highest identifier as the leader within the ring.
Therefore each process executes the following algorithm:

send(id); . initially the process sends its id
while true do

receive(m);
if m = id then

stop; . process is the leader
end if
if m > id then

send(m); . forward identifier
end if

end while

2

(a) Model the leader election protocol for n processes as a channel system. That is,
give a graph that represents the way the processes communicate with each other,
and give a graph that represents the behavior of each single process. Do this twice:
for n = 3 and (using the . . . notation) for general n.

(b) Give an initial execution fragment of T ([P1|P2|P3]) such that at least one process
has executed the send statement within the body of the while loop. Assume for
0 < i ≤ 3, that process Pi has identifier idi = i.

3

