The goal of this sheet is to become familiar with the notion of a linear-time property as such (and, for the most part, not in relation to an already given transition system, as in the previous exercise sheet).

Exercise 1: Linear-Time Properties

Assume $AP = \{a, b\}$. For each of the following properties P,

(a) formalize P as a set of traces using set comprehension
(for example: ”always a“ can be formalized as $\{A_1A_2A_3\cdots | \forall i. a \in A_i\}$),

(b) formalize P as a set of traces using ω-regular expressions
(for example, $(\{a\} + \{a, b\})^\omega$),

(c) give an example of a trace that satisfies P,

(d) give an example of a trace that does not satisfy P,

(e) give all states of the transition system below that satisfy P, and

(f) state whether or not the transition system below satisfies P.

\[
\begin{array}{c}
\{a\} \\
\text{s}_1 \\
\{a\} \\
\text{s}_3 \\
\{a, b\} \\
\text{s}_4 \\
\{a\} \\
\text{s}_2 \\
\end{array}
\]

(P_1) Always (at any point of time) a or b holds.

(P_2) Always (at any point of time) a and b holds.

(P_3) Never b holds before a holds.

(P_4) Every time a holds there will be eventually a point of time where b holds.

(P_5) At exactly three points of time, a holds.

(P_6) If there are infinitely many points of time where a holds, then there are infinitely many points of time where b holds.

(P_7) There are only finitely many points of time where a holds.