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The goal of this sheet is to become familiar with safety properties and with the concepts that are

important for safety properties, i.e., with prefixes and the closure.

Exercise 1: LT Properties for a Program
The goal of this task is to learn how to recognize safety properties in the context of a program

(for atomic propositions that are defined for a given program).

Let the set AP of atomic propositions be given by AP = {x = 0, x > 1}.
Consider a nonterminating sequential program P that manipulates the variable x.
Formalize the following properties as LT properties, using set notation,
i.e., {A0A1A2 . . . | 〈condition on indices i, or i and j, etc.〉}.

(a) false

(b) initially x is equal to 0

(c) initially x differs from 0

(d) intially x is equal to 0, but at some point x exceeds 1

(e) x exceeds 1 only finitely many times

(f) x exceeds 1 infinitely often

(g) the value of x alternates between 0 and 2

(h) true

Determine which of the properties are safety properties. Justify your answers.

Exercise 2: Traces and Closure
The goal of this task is understand the concepts of safety and closure by manipulating the

corresponding definitions.

Let TS be a transition system. Show that the set closure(Traces(TS)) is a safety property.
As an asidee, TS |= closure(Traces(TS)). There is a simple reason why this holds,
namely?

Exercise 3: Prefixes and Closure of a Property
The goal of this task is to get a better understanding of the relation between the set of finite

prefixes of a property and the closure (which is defined using the prefixes).

Let P be an LT property. Prove the following claim:

pref (closure(P )) = pref (P )
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Exercise 4: Safety Properties
The goal of this task is to learn how to recognize safety properties (for atomic propositions that

are left abstract).

Consider the set AP = {a, b} of atomic propositions. Formulize the following properties
as LT properties. Determine which of the properties is an invariant, a safety property, or
neither.

(a) a should never occur

(b) a should occur exactly once

(c) a and b alternate infinitely often

(d) a should eventually be followed by b.

Exercise 5: Real Numbers as Traces, Closure for Sets of Real Numbers
The goal of this task is to understand the notion of a safety property as a closed set (i.e., a set

that is equal to its closure), via an analogy to closed intervals.

We define real numbers as a variant of decimal numbers, namely decimal numbers with
infinitely many digits after the comma (possibly 0). A decimal number is one with finitely
many digits after the comma (possibly 0). In other words, a real number is an infinite
sequence of digits (and one occurrence of a comma), and a decimal number is a finite
sequence of digits (and at most one occurrence of a comma). In this view, a (finite) prefix
of a real number is thus a decimal number.

Let S be a set of real numbers. Define

closure1(S) = {x | for every n there exists y ∈ S such that |x− y| < (1/10)n}

and

closure2(S) = {x | every prefix of x is the prefix of some element y ∈ S} .

Thus, in the notation of the lecture, closure2(S) = {x | pref (x) ⊆ pref (S)}.
We also define

closure3(S) = {x | for every n there exists y ∈ S such that distance(x, y) < 1/n}

where distance(x, y) = 1/n where n is the first position where the digits of x and y differ.

Show that the closure of the open interval (0, 1) = {x | 0 < x < 1} is the closed interval
[0, 1] = {x | 0 ≤ x ≤ 1} for all three notions of closure.
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