
Prof. Dr. Andreas Podelski
Dominik Klumpp

Hand in until January 8th, 2020
15:59 via the post boxes

Discussion: January 15th, 2020

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 10

Exercise 1: Linear-Time Properties 13 Points
The goal of this exercise is to help you better understand the representation of properties as sets

of traces, as well as the notion of satisfaction by a state or a transition system.

Assume AP = {a, b}. For each of the properties Pi, complete the following tasks:

(a) Formalize P as a set of traces using set comprehension.
For example: “always a” can be formalized as {A0A1A2 · · · | ∀i. a ∈ Ai}.

(b) Give an example of a trace that satisfies P .

(c) Give an example of a trace that does not satisfy P .

(d) Give all states of the transition system below that satisfy P .

(e) State whether or not the transition system below satisfies P .

(f) Is the property a safety property? If so, give the set of all bad prefixes.
For example, the bad prefixes of “always a” can be given as

BadPrefix always a = {A0A1 . . . An | ∃i ∈ {0, . . . , n} . a /∈ Ai}

(g) Is the property an invariant property? If so, give the invariant condition as a
propositional logic formula.

(h) Is the property a liveness property? If so, show that no prefix is “bad”: Explain how
any prefix A0A1 . . . An can be continued to form a trace that satisfies the property.
For example, for the property “eventually (at some point in time) a”, any prefix
A0A1 . . . An can be continued as π = A0A1 . . . An {a}ω. Then π |= “eventually a”.

s1

{a}

s2{} s3 {a}

s4

{a, b}

1



(P1) Always (at any point of time) a or b holds.

(P2) Always (at any point of time) a and b holds.

(P3) Never b holds before a holds.

(P4) Every time a holds there will be eventually a point of time where b holds.

(P5) At exactly three points of time, a holds.

(P6) If there are infinitely many points of time where a holds, then there are infinitely
many points of time where b holds.

(P7) There are only finitely many points of time where a holds.

Exercise 2: Safety & Liveness 8 Points
Consider the categories (a)-(d) of linear-time properties below. For each of them, give
two examples of a properties that fall into this category: a safety property and a liveness
property (if such examples exist). If no example exists, argue why this is the case.

!4 Careful reading required. !4
(a) Properties E where, for every trace π = A0A1A2 . . . with π |= E, it is sufficient to

examine a finite prefix A0A1 . . . An of π to determine that π satisfies property E.

(b) Properties E where it is not sufficient for every trace π = A0A1A2 . . . with π |= E
to examine a finite prefix A0A1 . . . An of π to determine that π satisfies property E.
Instead, the whole trace must be examined.

(c) Properties E where, for every trace π = A0A1A2 . . . with π 6|= E, it is sufficient to
examine a finite prefix A0A1 . . . An of π to determine that π violates property E.

(d) Properties E where it is not sufficient for every trace π = A0A1A2 . . . with π 6|= E
to examine a finite prefix A0A1 . . . An of π to determine that π violates property E.
Instead, the whole trace must be examined.

Exercise 3: Invariant checking I 4 Points
In the lecture, you have seen an algorithm for invariant checking by forward depth-first
search. This algorithm is displayed in algorithm 1.
Apply this algorithm to the following transition system whose set of atomic propositions
is AP = {a, b}. The invariant Φ to be checked is the propositional logical formula a.

s0 {a} s1 {a}

s2

{a, b}

s3

{a}

s4

{b}

2



Whenever you iterate over a set of states, always take state si before state sj if i is smaller
than j.
Present the execution of the algorithm by writing down the contents of the set U and the
stack π directly before every call to the function DFS.

Algorithm 1: DFS-based invariant checking

input : a finite transition system T and a propositional formula Φ
output: “yes” if T |= “always Φ”, otherwise “no” and a counterexample
U := ∅; // set of states

π := ε; // stack of states

forall s ∈ I do
if DFS(s,Φ) then

return(“no”, reverse(π)); // path from s to error state

end

end
return(“yes”); // T |= ‘‘always Φ’’

function DFS(s,Φ)
push(s, π);
if s /∈ U then

U := U ∪ {s}; // mark s as reachable

if s 6|= Φ then
return(“true”); // s is an error state

else
forall s′ ∈ Post(s) do

if DFS(s′,Φ) then
return(“true”); // s′ lies on a path to an error state

end

end

end

end
pop(π);
return(“false”);

end

Exercise 4?: Invariant checking II 2 Bonus Points
The “DFS-based invariant checking” algorithm presented above (and in the lecture) al-
ways computes a minimal counterexample (minimal in the sense that you cannot remove
the last state). However, the algorithm does not necessarily compute a counterexample of
minimal length (there might be two minimal counterexamples of different lengths). What
is an example that shows that the counterexample that is returned does not always have
minimal length?

For this purpose, provide the following.

� A transition system that has three states s0, s1, s2.

3



� An invariant.

� The (non-minimal) counterexample that is computed by the algorithm that uses
the following strategy for iterating over a set of states: always take state si before
state sj if i is smaller than j.

� A minimal counterexample.

4


