Formal Methods for Java
Lecture 2: Operational Semantics

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

October 28, 2011
The Java Language Specification (JLS) 3rd edition gives semantics for Java

- The document has 684 pages.
- 118 pages to define semantics of expression.
- 42 pages to define semantics of method invocation.

Semantics are only defined by prosa text.

How can we give the semantics formally?

Need a mathematical model for computations.
Idea: define transition system for Java

Definition (Transition System)

A transition system \((TS)\) is a structure \(TS = (Q, Act, \rightarrow)\), where

- \(Q\) is a set of states,
- \(Act\) a set of actions,
- \(\rightarrow \subseteq Q \times Act \times Q\) the transition relation.

- \(Q\) reflects the current dynamic state (heap and local variables).
- \(Act\) is the executed code.
What is the state after executing this code?

```
List mylist = new LinkedList();
mylist.add(new Integer(1));
```
The state of a Java program gives valuations local and global (heap) variables.

- \(Q = \text{Heap} \times \text{Local} \)
- \(\text{Heap} = \text{Address} \rightarrow \text{Class} \times \text{seq Value} \)
- \(\text{Local} = \text{Identifier} \rightarrow \text{Value} \)
- \(\text{Value} = \mathbb{Z}, \text{Address} \subseteq \mathbb{Z} \)

A state is denoted as \((\text{heap}, \text{lcl})\), where \(\text{heap} : \text{Heap}\) and \(\text{lcl} : \text{Local}\).
Actions of a Java Program

An action of a Java Program is either
- the evaluation of an expression e to a value v, denoted as $e \triangleright v$, or
- a Java statement, or
- a Java code block.

Note that expressions with side-effects can modify the current state.
Example: Actions of a Java Program

Post-increment expression:

\[
(\text{heap}, \text{lcl} \cup \{x \mapsto 5\}) \xrightarrow{x++5} (\text{heap}, \text{lcl} \cup \{x \mapsto 6\})
\]

Pre-increment expression:

\[
(\text{heap}, \text{lcl} \cup \{x \mapsto 5\}) \xrightarrow{++x6} (\text{heap}, \text{lcl} \cup \{x \mapsto 6\})
\]

Assignment expression:

\[
(\text{heap}, \text{lcl} \cup \{x \mapsto 5\}) \xrightarrow{x=x*2>10} (\text{heap}, \text{lcl} \cup \{x \mapsto 10\})
\]

Assignment statement:

\[
(\text{heap}, \text{lcl} \cup \{x \mapsto 5\}) \xrightarrow{x=x*2;} (\text{heap}, \text{lcl} \cup \{x \mapsto 10\})
\]
The last slide listed some examples for transitions. Define rules when a transition is valid.

Definition (Inference Rules)

A rule of inference

\[
\frac{F_1 \ldots F_n}{G}, \text{ where } \ldots
\]

is a decidable relation between formulae. The formulae F_1, \ldots, F_n are called the premises of the rule and G is called the conclusion. If $n = 0$ the rule is called an axiom schema. In this case the bar may be omitted.

The intuition of a rule is that if all premises hold, the conclusion also holds.
Rules for Java expressions (1)

axiom for evaluating local variables:

\[(heap, lcl) \xrightarrow{x \mapsto lcl(x)} (heap, lcl)\]

rule for field access:

\[(heap, lcl) \xrightarrow{e \mapsto v} (heap', lcl')\]

\[(heap, lcl) \xrightarrow{e.fld \mapsto heap'(v)(idx)} (heap', lcl')\]

where \(idx\) is the index of the field \(fld\) in the object \(heap'(v)\)

rule for assignment to local:

\[(heap, lcl) \xrightarrow{e \mapsto v} (heap', lcl')\]

\[(heap, lcl) \xrightarrow{x = e \mapsto v} (heap', lcl' \oplus \{x \mapsto v\})\]
Rules for Java expressions (2)

axiom for evaluating a constant expression c:

$$(heap, lcl) \xrightarrow{c \triangleright c} (heap, lcl)$$

rule for multiplication (similar for other binary operators)

$$(heap_1, lcl_1) \xrightarrow{e_1 \triangleright v_1} (heap_2, lcl_2)$$
$$(heap_2, lcl_2) \xrightarrow{e_2 \triangleright v_2} (heap_3, lcl_3)$$

$$(heap_1, lcl_1) \xrightarrow{e_1 \ast e_2 \triangleright (v_1 \cdot v_2) \mod 2^{32}} (heap_3, lcl_3)$$
A derivation for $x = x \times 2$

$$(heap, lcl \cup \{x \mapsto 5\}) \xrightarrow{x \mapsto 5} (heap, lcl \cup \{x \mapsto 5\})$$

$$(heap, lcl \cup \{x \mapsto 5\}) \xrightarrow{2 \times 2} (heap, lcl \cup \{x \mapsto 5\})$$

$$(heap, lcl \cup \{x \mapsto 5\}) \xrightarrow{x \times 2 \mapsto 10} (heap, lcl \cup \{x \mapsto 5\})$$

$$(heap, lcl \cup \{x \mapsto 5\}) \xrightarrow{x = x \times 2 \mapsto 10} (heap, lcl \cup \{x \mapsto 10\})$$
Rules for Java Statements

expression statement (assignment or method call):

\[
(\text{heap}, \text{lcl}) \xrightarrow{e \triangleright v} (\text{heap}', \text{lcl}') \\
(\text{heap}, \text{lcl}) \xrightarrow{e;} (\text{heap}', \text{lcl}')
\]

sequence of statements:

\[
(\text{heap}_1, \text{lcl}_1) \xrightarrow{s_1} (\text{heap}_2, \text{lcl}_2) \quad (\text{heap}_2, \text{lcl}_2) \xrightarrow{s_2} (\text{heap}_3, \text{lcl}_3) \\
(\text{heap}_1, \text{lcl}_1) \xrightarrow{s_1 s_2} (\text{heap}_3, \text{lcl}_3)
\]
if statement:

\[
(\text{heap}_1, \text{lcl}_1) \xrightarrow{\text{e} \triangleright v} (\text{heap}_2, \text{lcl}_2) \quad (\text{heap}_2, \text{lcl}_2) \xrightarrow{\text{bl}_1} (\text{heap}_3, \text{lcl}_3)
\]

\[
(\text{heap}_1, \text{lcl}_1) \xrightarrow{\text{if}(\text{e}) \text{ bl}_1 \text{ else} \text{ bl}_2} (\text{heap}_3, \text{lcl}_3), \text{ where } v \neq 0
\]

\[
(\text{heap}_1, \text{lcl}_1) \xrightarrow{\text{e} \triangleright v} (\text{heap}_2, \text{lcl}_2) \quad (\text{heap}_2, \text{lcl}_2) \xrightarrow{\text{bl}_2} (\text{heap}_3, \text{lcl}_3)
\]

\[
(\text{heap}_1, \text{lcl}_1) \xrightarrow{\text{if}(\text{e}) \text{ bl}_1 \text{ else} \text{ bl}_2} (\text{heap}_3, \text{lcl}_3), \text{ where } v = 0
\]