
Formal Methods for Java
Lecture 6: ESC/Java

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

November 11, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 11, 2011 1 / 10



Runtime vs. Static Checking

Runtime Checking

finds bugs at run-time,

tests for violation during execution,

can check most of the JML,

is done by jmlrac.

Static Checking

finds bugs at compile-time,

proves that there is no violation,

can check only parts of the JML,

is done by ESC/Java.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 11, 2011 2 / 10



ESC/Java 2

Developed by the DEC Software Research Center (now HP Research),

Extended by David Cok and Joe Kiniry (Kind Software)

Proves correctness of specification,

Is neither sound nor complete (but this will improve),

Is useful to find bugs.

Homepage:
http://kind.ucd.ie/products/opensource/ESCJava2

Download link: ESCJava2.0.5

Works with Java-1.5.0 (1.6.0 does not work).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 11, 2011 3 / 10

http://kind.ucd.ie/products/opensource/ESCJava2
http://kind.ucd.ie/products/opensource/ESCJava2/releases/ESCJava2.0.5.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase5-419410.html#jre-1.5.0_22-oth-JPR


Example

Consider the following code:
Object[] a;
void m(int i) {
a[i] = "Hello";

}

Is a a null-pointer? (NullPointerException)

Is i nonnegative? (ArrayIndexOutOfBoundsException)

Is i smaller than the array length?
(ArrayIndexOutOfBoundsException)

Is a an array of Object or String?
(ArrayStoreException)

ESC/Java warns about these issues. (Demo)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 11, 2011 4 / 10



ESC/Java and run-time exceptions

ESC/Java checks that no undeclared run-time exceptions occur.

NullPointerException

ClassCastException

ArrayIndexOutOfBoundsException

ArrayStoreException

ArithmeticException

NegativeArraySizeException

other run-time exception, e.g., when calling library functions.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 11, 2011 5 / 10



ESC/Java and specification

ESC/Java also checks the JML specification:

ensures in method contract,

requires in called methods,

assert statements,

signals clause,

invariant (loop invariant and class invariant).

ESC/Java assumes that some formulae hold:

requires in method contract,

ensures in called methods,

assume statements,

invariant (loop invariant and class invariant).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 11, 2011 6 / 10



NullPointerException

public void put(Object o) {
int hash = o.hashCode();
...

}

results in Possible null dereference.

Solutions:

Declare o as non_null.

Add o != null to precondition.

Add throws NullPointerException.
(Also add signals (NullPointerException) o == null)

Add Java code that handles null pointers.
int hash = (o == null ? 0 : o.hashCode());

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 11, 2011 7 / 10



ClassCastException

class Priority implements Comparable {
public int compareTo(Object other) {

Priority o = (Priority) other;
...

}
}

results in Possible type cast error.
Solutions:

Add throws ClassCastException.
(Also add
signals (ClassCastException) !(other instanceof Priority))

Add Java code that handles differently typed objects:
if (!(other instanceof Priority))

return -other.compareTo(this)
Priority o = ...

This results in a Possible null dereference.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 11, 2011 8 / 10



ArrayIndexOutOfBoundsException

void write(/*@non_null@*/ byte[] what, int offset, int len) {
for (int i = 0; i < len; i++) {
write(what[offset+i]);

}
}

results in Possible negative array index
Solution:

Add offset >= 0 to pre-condition,
this results in Array index possibly too large.

Add offset + len <= what.length.

ESC/Java does not complain but there is still a problem.
If offset and len are very large numbers, then offset + len can be
negative. The code would throw an
ArrayIndexOutOfBoundsException at run-time.

The correct pre-condition is:
/*@ requires offset >= 0 && offset + len >= offset
@ && offset + len <= what.length;
@*/

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 11, 2011 9 / 10



ArrayStoreException

public class Stack {
/*@non_null@*/ Object[] elems;
int top;
/*@invariant 0 <= top && top <= elems.length @*/

/*@ requires top < elems.length;
@*/

void add(Object o) {
elems[top++] = o;

}

results in Type of right-hand side possibly not a subtype of array element
type (ArrayStore).
Solutions:

Add an invariant \typeof(elems) == \type(Object[]).

Add a precondition \typeof(o) <: \elemtype(\typeof(elems)).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 11, 2011 10 / 10


