
Formal Methods for Java
Lecture 3: Operational Semantics (Part 2)

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

November 2, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 1 / 25

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

Q reflects the current dynamic state (heap and local variables).

Act is the executed code.

Idea from: D. v. Oheimb, T. Nipkow, Machine-checking the Java
specification: Proving type-safety, 1999

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 2 / 25

State of a Java Program

The state of a Java program gives valuations local and global (heap)
variables.

Q = Heap × Local

Heap = Address → Class × seq Value

Local = Identifier → Value

Value = Z,Address ⊆ Z
A state is denoted as (heap, lcl), where heap : Heap and lcl : Local .

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 3 / 25

Actions of a Java Program

An action of a Java Program is either

the evaluation of an expression e to a value v , denoted as e . v , or

a Java statement, or

a Java code block.

Note that expressions with side-effects can modify the current state

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 4 / 25

Rules for Java Expressions

axiom for evaluating local variables:

(heap, lcl)
x.lcl(x)−−−−−→ (heap, lcl)

axiom for evaluating constants:

(heap, lcl) c.c−−−→ (heap, lcl)

rule for field access:

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl)
e.fld.heap′(v)(idx)−−−−−−−−−−−−→ (heap′, lcl ′)

,
where idx is the index
of the field fld in the
object heap′(v)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 5 / 25

Rules for Assignment Expressions

rule for assignment to local:

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl) x=e.v−−−−−→ (heap′, lcl ′ ⊕ {x 7→ v})

rule for assignment to field:

(heap1, lcl1) e1.v1−−−−→ (heap2, lcl2)
(heap2, lcl2) e2.v2−−−−→ (heap3, lcl3)

(heap1, lcl1) e1.fld=e2.v2−−−−−−−−→ (heap4, lcl3)
,

where heap4 = heap3 ⊕ {(v1, idx) 7→ v2} and idx is the index of the field
fld in the object at heap3(v1).

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 6 / 25

Rules for Java Statements

expression statement (assignment or method call):

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl) e;−−→ (heap′, lcl ′)

sequence of statements:

(heap1, lcl1) s1−−→ (heap2, lcl2) (heap2, lcl2) s2−−→ (heap3, lcl3)

(heap1, lcl1) s1 s2−−−→ (heap3, lcl3)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 7 / 25

Rules for Java Statements

if statement:

(heap1, lcl1) e.v−−−→ (heap2, lcl2) (heap2, lcl2) s1−−→ (heap3, lcl3)

(heap1, lcl1)
if(e) s1elses2−−−−−−−−→ (heap3, lcl3)

,where v 6= 0

(heap1, lcl1) e.v−−−→ (heap2, lcl2) (heap2, lcl2) s2−−→ (heap3, lcl3)

(heap1, lcl1)
if(e) s1elses2−−−−−−−−→ (heap3, lcl3)

,where v = 0

while statement:

(heap1, lcl1)
if(e){s while(e) s}−−−−−−−−−−−−→ (heap2, lcl2)

(heap1, lcl1)
while(e) s−−−−−−→ (heap2, lcl2)

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 8 / 25

Rule for Java Method Call

(heap1, lcl1) e.v−−−→ (heap2, lcl2)
(heap2, lcl2) e1.v1−−−−→ (heap3, lcl3)

...
(heapn+1, lcln+1) en.vn−−−−→ (heapn+2, lcln+2)

(heapn+2,mlcl) body−−−−→ (heapn+3,mlcl ′)

(heap1, lcl1)
e.m(e1,...,en).mlcl ′(\result)−−−−−−−−−−−−−−−−−→ (heapn+3, lcln+2)

,

where body is the body of the method m in the object heapn+2(v), and
mlcl = {this 7→ v , param1 7→ v1, . . . , paramn 7→ vn} where
param1, . . . , paramn are the names of the parameters of m

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 9 / 25

Creating Objects

Creating an Object is always combined with the call of a constructor:

heap1 = heap ∪ {na 7→ (Type, 〈0, . . . , 0〉)
(heap1, lcl)

na.<init>(e1,...,en).v−−−−−−−−−−−−−−→ (heap′, lcl ′)

(heap, lcl)
new Type(e1,...,en).na−−−−−−−−−−−−−−→ (heap′, lcl ′)

, where na /∈ dom heap

Here <init> stands for the internal name of the constructor.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 10 / 25

Exceptions

To handle exceptions a few changes are necessary:

We extend the state by a flow component:
Q = Flow × Heap × Local

Flow ::= Norm|Ret|Exc〈〈Address〉〉

We use the identifiers flow ∈ Flow , heap ∈ Heap and lcl ∈ Local in the
rules. Also q ∈ Q stands for an arbitrary state.
The following axioms state that in an abnormal state statements are not
executed:

(flow , heap, lcl) e.v−−−→ (flow , heap, lcl), where flow 6= Norm

(flow , heap, lcl) s−→ (flow , heap, lcl), where flow 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 11 / 25

Expressions With Exceptions

The previously defined rules are valid only if the left-hand-state is not an
exception state.

(Norm, heap, lcl) e1.v1−−−−→ q q e2.v2−−−−→ q′

(Norm, heap, lcl)
e1*e2.(v1·v2) mod 232−−−−−−−−−−−−−−→ q′

(Norm, heap, lcl) st1−−→ q q st2−−→ q′

(Norm, heap, lcl) st1;st2−−−−→ q′

(Norm, heap, lcl) e.v−−−→ q q s1−−→ q′

(Norm, heap, lcl)
if(e) s1elses2−−−−−−−−→ q′

, where v 6= 0

Note that exceptions are propagated using the axiom from the last slide.

(flow , heap, lcl) e.v−−−→ (flow , heap, lcl), where flow 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 12 / 25

Throwing Exceptions

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) throw e;−−−−−→ (Exc(v), heap′, lcl ′)

What happens if in a field access the object is null?

(Norm, heap, lcl) e.0−−−→ q′

q′
throw new NullPointerException()−−−−−−−−−−−−−−−−−−−−→ q′′

(Norm, heap, lcl) e.fld.v−−−−−→ q′′
,where v is some arbitrary value

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 13 / 25

Complete Rules for throw

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) throw e;−−−−−→ (Exc(v), heap′, lcl ′)
, where v 6= 0

(Norm, heap, lcl) e.0−−−→ q′

q′
throw new NullPointerException()−−−−−−−−−−−−−−−−−−−−→ q′′

(Norm, heap, lcl) throw e;−−−−−→ q′′

(Norm, heap, lcl) e.v−−−→ (flow ′, heap′, lcl ′)

(Norm, heap, lcl) throw e;−−−−−→ (flow ′, heap′, lcl ′)
, where flow ′ 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 14 / 25

Catching Exceptions

Catching an exception:

(Norm, heap, lcl) s1−−→ (Exc(v), heap′, lcl ′)
(Norm, heap′, lcl ′ ∪ {ex 7→ v}) s2−−→ q′′

(Norm, heap, lcl)
try s1catch(Type ex)s2−−−−−−−−−−−−−−→ q′′

, where v is an instance of Type

No exception catched:

(Norm, h, l) s1−−→ (flow ′, h′, l ′)

(Norm, h, l)
try s1catch(Type ex)s2−−−−−−−−−−−−−−→ (flow ′, h′, l ′)

,

where flow’ is not
Exc(v) or v is
not an instance of
Type

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 15 / 25

Return Statement

Return statement stores the value and signals the Ret in flow component:

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) return e−−−−−→ (Ret, heap′, lcl ′ ⊕ {\result 7→ v})

But evaluating e can also throw exception:

(Norm, heap, lcl) e.v−−−→ (flow , heap′, lcl ′)

(Norm, heap, lcl) return e−−−−−→ (flow , heap′, lcl ′)
, where flow 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 16 / 25

Method Call (Normal Case)

(Norm, h1, l1) e.v−−−→ q2

q2
e1.v1−−−−→ q3

...
qn+1

en.vn−−−−→ (fn+2, hn+2, ln+2)

(fn+2, hn+2,ml) body−−−−→ (Ret, hn+3,ml ′)

(Norm, h1, l1)
e.m(e1,...,en).ml ′(\result)−−−−−−−−−−−−−−−−→ (Norm, heapn+3, ln+2)

,

where param1, . . . , paramn are the names of the parameters and body is
the body of the method m in the object heapn+2(v), and
ml = {this 7→ v , param1 7→ v1, . . . , paramn 7→ vn}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 17 / 25

Method Call With Exception

(Norm, h1, l1) e.v−−−→ q2

q2
e1.v1−−−−→ q3

...
qn+1

en.vn−−−−→ (fn+2, hn+2, ln+2)

(fn+2, hn+2,ml) body−−−−→ (Exc(ve), hn+3,ml ′)

(Norm, h1, l1)
e.m(e1,...,en).ml ′(\result)−−−−−−−−−−−−−−−−→ (Exc(ve), heapn+3, ln+2)

,

where param1, . . . , paramn are the names of the parameters and body is
the body of the method m in the object heapn+2(v), and
ml = {this 7→ v , param1 7→ v1, . . . , paramn 7→ vn}

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 18 / 25

Semantics of Specification

/*@ requires x >= 0;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

Whenever the method is called with values that satisfy the requires-formula
and the method terminates normally then the ensures-formula holds.
For all executions of the method,

(Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),

if lcl(x) >= 0 then the formula

lcl ′(\result) <= Math.sqrt(lcl(x)) < lcl ′(\result) + 1

holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 19 / 25

What About Exceptions?

/*@ requires true;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@ signals (IllegalArgumentException) x < 0;
@ signals_only IllegalArgumentException;
@*/

public static int isqrt(int x) {
body

}

For all transitions

(Norm, heap, lcl) body−−−−→ (Exc(v), heap′, lcl ′)

where lcl satisfies the precondition and v is an Exception, v must be of
type IllegalArgumentException. Furthermore, lcl must satisfy x < 0.
The code is still allowed to throw an Error like a OutOfMemoryError or a
ClassNotFoundError.
If no signals only clause is specified, JML assumes a sane default value:
The method may throw only exceptions it declares with the throws

keyword (in this case none).
Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 20 / 25

Side-Effects

A method can change the heap in an unpredictable way.
The assignable clause restricts changes:
/*@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

For all executions of the method,

(Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),

if lcl(x) >= 0 then the formula

lcl ′(\result) <= Math.sqrt(lcl(x)) < lcl ′(\result + 1)

holds and heap = heap′.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 21 / 25

What is the meaning of a formula

A formula like x >= 0 is a Boolean Java expression. It can be evaluated
with the operational semantics.
x >= 0 holds in state (heap, lcl), iff

(Norm, heap, lcl) x >= 0.v−−−−−−→ (fl , heap, lcl)

An assertion may not have side-effects.
For the ensures formula both the pre-state and the post-state are
necessary to evaluate the formula.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 22 / 25

Semantics of a Specification (formally)

A function satisfies the specification

requires e1

ensures e2

iff for all executions

(Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′)

with (Norm, heap, lcl) e1.v1−−−−→ q1, v1 6= 0, the post-condition holds, i. e.,
there exists v2, q2, such that

(Norm, heap′, lcl ′) e2.v2−−−−→ q2, where v2 6= 0

However we need a new rule for evaluating \old :

(Norm, heap, lcl) e.v−−−→ q

(Norm, heap′, lcl ′)
\old(e).v−−−−−−−→ q

,
where heap, lcl is the state of the pro-
gram before body was executed

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 23 / 25

Method Parameters in Ensures-Clause

/*@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
x = 0;
return 0;

}

Is this code a correct implementation of the specification?

No, because method parameters are always evaluated in the pre-state, so
\result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;

is the same as
\result <= Math.sqrt(\old(x)) && Math.sqrt(\old(x)) < \result + 1;

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 24 / 25

Side-Effects in Specification

In JML side-effects in specifications are forbidden:
If e is an expression in a specification and

(Norm, heap, lcl) e.v−−−→ (flow , heap′, lcl ′)

then heap = heap′ and lcl = lcl ′.
To be more precise, heap ⊆ heap′ since the new heap may contain new
(unreachable) objects.
Also flow 6= Norm is allowed. In that case the value of v may be
unpredictable.
If the value of v is undefined the tools should assume the worst-case, i. e.,
report that code is buggy.

Jochen Hoenicke (Software Engineering) Formal Methods for Java November 2, 2011 25 / 25

