
Formal Methods for Java
Lecture 29: Java Pathfinder and Design By Contract

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Feb 15, 2012

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 1 / 13

Testing Programs with Java Pathfinder

Java Pathfinder on an example

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Java Pathfinder is extendable

There are several extensions already:
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start

We take a closer look into jpf-aprop.

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 3 / 13

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start

What is jpf-aprop?

The jpf-aprop project contains Java annotation based program property
specifications, together with corresponding listeners to check them.

Uses Java annotations, see JDK 1.5.

Property Specification similar to JML

JSR-305 and JSR-308 proposals

To check them, listeners need to be added to jpf config.

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 4 / 13

Annotations

Annotations in Java use prefix @
They can be added as modifier to class, field, and method definitions.

@Nonnull – check for null values

@Const – check for object modifications

@SandBox – check for modifications

@GuardedBy – lock policy specifications

@NonShared – check for concurrent use

@Requires, @Ensures and @Invariant – Design by Contract

@Sequence,@SequenceEvent,@SequenceMethod,@SequenceObject –
automatic UML sequence diagram creation

@Test – in-source method test specifications

@Confined, @Region – check that references do not leave regions.

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 5 / 13

Design By Contract

Contract ::= Contract LogicOp Contract | Term RelOp Term

| Term instanceof ID | Term matches String

| Term isEmpty | Term notEmpty

| Term within Term +- Term | Term within Term , Term

| Term satisfies Property

Term ::= Term BinOp Term | Function(Term∗) | old(Term)

| String | Number | Var | null | EPS | return
LogicOp ::= && | ||
RelOp ::= == | != | < | <= | > | >=
BinOp ::= + | - | * | / | ^

Predicate ::= ID | ID(Term∗)

Function ::= ID | log | log10
Var ::= ID

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 6 / 13

Example

@Invariant({"numElems > 0",
"elems satisfies Heap$IsSorted(numElems)"})

public class Heap implements PriorityQueue {
private @Nonnull Comparable[] elems;
private int numElems;

@SandBox
static class IsSorted implements Predicate {

public String evaluate (Object testObj, Object[] args) {
Comparable[] elems = (Comparable[]) testObj;
int numElems = (Integer) args[0];
for (int i = 0; i < numElems; i++) {

if (2*i+1 < numElems
&& elems[i].compareTo(elems[2*i+1]) > 0)
return "not sorted";

if (2*i+2 < numElems
&& elems[i].compareTo(elems[2*i+2]) > 0)
return "not sorted";

}
return null;

}
}

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 7 / 13

Limitations of jpf-aprop

The syntax for predicates very restricted.

The syntax feels adhoc, e.g. a within b +- 2.

Syntax check is done at run-time.

Cannot express numElems <= elems.length (yet).

No check for typos in identifiers.

Surprising results: true == false holds.

Many things not implemented, e.g. functions (but no warning).

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 8 / 13

Demo

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 9 / 13

Combining JML and Java Pathfinder

Pathfinder:

+ Exhaustive model-checking.

+ Exact simulation of VM.

+ Can run any Java code.

− No good Design By Contract specifications.

JML Runtime Assertion Checker:

+ Good Design by Contract Syntax.

+ Many features checkable at run time.

− Can only find bugs at runtime.

− Test cases have to be explicitly written.

Can we combine both programs?

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 10 / 13

Yes we can

Compiling:

Set classpath to include Java Pathfinder runtime.

Compile classes with jmlc.

One can change compiler in ant script.

Running:

jmlrac runs Java with a special classpath.

If one sets classpath by hand one can run with java.

Change Java Pathfinder scripts to include JML runtime and model
classes.

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 11 / 13

Demo

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 12 / 13

Conclusion

Design by Contract with jpf-aprop is a good idea
... but it does not work.

JML can be run inside of Java Pathfinder
... and it works!

Jochen Hoenicke (Software Engineering) FM4J Feb 15, 2012 13 / 13

	Testing Programs with Java Pathfinder

