
Formal Methods for Java
Lecture 23: Excursion: Explicit State Model Checking and JVM

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Jan 25, 2012

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 1 / 23



What Have We Seen?

JML Tools: Runtime assertion checking

ESC/Java: Static checking of JML annotations and runtime
constraints

KeY: Formal proof of JML annotations

Jahob: Data structure verification

å Symbolic state representation and reasoning

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 2 / 23



Explicit State Model Checking



Now: Explicit State

Concrete representation of states, e.g., x = 4, y = 3

Transitions produce new concrete states, e.g.,

x = 4, y = 3
x=x+1−−−−→ x = 5, y = 3

System model: Transition System (TS)

Graph search algorithms used to search for property violations

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 4 / 23



Transition Systems (TS)

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

q0start

q1

q2

q3

x++;

y++;

y++;

x++;

Q = {q0, q1, q2, q3}
I = {q0}
→ = {(q0, x++, q1),

(q1, y++, q3),
(q0, y++, q2),
(q2, x++, q3)}

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 5 / 23



Exploring Transition Systems

Treat transition system as graph

Use graph search algorithm to explore states

Different search strategies:

Depth-First-Search (DFS)
Breath-First-Search (BFS)
Greedy Search

å Goal: Find error fast (“before running out of memory”)
å More debugging than verification

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 6 / 23



Searching



Basics

Explore states in a graph.

Unify states.

Keep “pending list” of nodes yet to explore.

Keep “closed list” of already explored states.

Theory

Explore all possible states.

Practice

Heuristic cutoff:

bounded number of states

bounded path length

. . .

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 8 / 23



Abstract Searching

1 Choose and remove next state s.

2 If s is already closed, goto Step 1

3 Evaluate s.

4 Add all successors of s onto the pending list

5 Move s to closed list

Main Operations

State evaluation

Creation of successor states

State unification

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 9 / 23



Different Types

Uninformed Searches

Exploration order determined by graph structure.

Not goal-directed.

Informed Searches

Exploration order guided by heuristics and/or path length.

“Prefer short paths.”

Heuristic value = estimate of distance to goal.

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 10 / 23



Depth-First-Search (DFS)

uninformed search

first explore the successor nodes, then the siblings

Pending list: LIFO (e.g., stack)

q0start

q1

q2

q3

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 11 / 23



Breath-First-Search (BFS)

uninformed search

first explore the siblings, then the successor nodes

Pending list: FIFO (e.g., Queue)

q0start

q1

q2

q3

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 12 / 23



Greedy Search

informed search

heuristic estimate of the minimal distance of a state to a goal

expand state with minimal value of the heuristic

Pending list: Ordered list (e.g., priority queue or Heap)

Problems

Highly sensitive to heuristic

Plateaus

Found error path might still be long

. . . but highly efficient in practice

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 13 / 23



A∗ Search

informed search

use heuristic,

but also consider the cost of the path to the current state

expand state with minimal sum of heuristic value and path cost

Pending list: Ordered list (e.g., priority queue or Heap)

Admissible heuristics

Let n be a node and d(n) be the exact distance of node n to the goal.
Heuristic h is admissible if and only if

∀v . h(v) ≤ d(v)

A∗ search with admissible heuristic ensures shortest path to goal!

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 14 / 23



A Unified Search Framework

Observation

Search procedures only differ in the order in which they explore the state
space.

We can express all these search methods using two functions over states s
(and a bound on the length of paths):

d(s) - a distance function

h(s) - a heuristic function

Choose s that minimizes d(s) + h(s).
d(s) h(s)

DFS −pathlength(s) 0

BFS pathlength(s) 0

Greedy Search 0 heuristic(s)

A∗ pathlength(s) heuristic(s)

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 15 / 23



Java Virtual Machine



Virtual vs. Concrete Machine

Concrete Machine

Virtual Machine

Programs

Machine independent code

Machine dependent interpreter in machine code

Machine code interpreter

Rebuild for every concrete machine Compile once — Run everywhere

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 17 / 23



JVM Basics

JVM interprets .class files

.class files contain

a description of classes (name, fields, methods, inheritance
relationships, referenced classes, . . . )
a description of fields (name, type, attributes (visibility, volatile,
transient, . . . ))
bytecode for the methods

Stack machine

Typed instructions

Bytecode verifier to ensure type safety

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 18 / 23



Different Memory Areas

Java separates between

a Java stack

Used for method calls and expression evaluation
One per thread
Checked for overflows

a native stack

Used for native calls using JNI
Not directly usable by the bytecode
Not checked for overflows

a heap

Used for dynamic allocation
Managed by garbage collectors
Shared between all threads
Size limited by JVM configuration

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 19 / 23



Calling Methods

Activation Frame contains:

Variables local to the called method

Stack space for instruction execution (Operand Stack)

Operand Stack

Locals

. . .

One activation frame per method call: x.foo()

1 pushes new activation frame

2 calls the method foo

3 pops the activation frame

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 20 / 23



Executing Instructions

Arguments are on the operand stack
å Some instructions move local variables or constants to the stack

Most instructions pop topmost arguments from the stack and push
result onto the stack

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 21 / 23



Example: lcmp

Compare two long values l1 and l2.

long l2 = popLong();
long l1 = popLong();
if (l1 < l2)
push(-1);

if (l1 == l2)
push(0);

if (l1 > l2)
push(1);

l2

l1

. . .

lcmp−−−→ result

. . .

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 22 / 23



Java Native Interface (JNI)

foreign function interface

execution jumps to non-Java code

runs outside of VM

uses native stack

but can access JVM trough JNIEnv structure
å JNIEnv needed to translate between native stack and heap

useful to access native OS libraries or optimize certain computation
tasks
å Assumption: Native code is faster than Java code
å Note: Native code breaks platform independence

Jochen Hoenicke (Software Engineering) FM4J Jan 25, 2012 23 / 23


	Explicit State Model Checking
	Searching
	Java Virtual Machine

