Formal Methods for Java
 Lecture 14: Proving with Key

Jochen Hoenicke

U

Albert-Ludwigs-University Freiburg

December 9, 2011

Case Study: Euklid's Algorithm

Java code to compute gcd of non-negative numbers:

```
public static int gcd(int a, int b) {
        while (a != 0 && b != 0) {
            if (a>b)
            a=a-b;
            else
                b = b - a;
        }
        return (a>b) ? a : b;
}
```

Lets prove it with KeY-System.

Specification

We first need a specification.

Definition (GCD)

Let a and b be natural numbers. A number d is the greatest common divisor (GCD) of a and b iff
(1) $d \mid a$ and $d \mid b$
(2) If $c \mid a$ and $c \mid b$, then $c \mid d$.
$d \mid a$ means d divides a.
$d \mid a: \Leftrightarrow \exists q . d * q=a$

JML Specification

The specifation can be converted to JML:
/*@
© requires $a>=0$ \&G $b>=0$;
© ensures \result >= 0;
© ensures (lexists int q; $\operatorname{Iresult*q~==~a)~EG~}$
© (lexists int q; \result*q == b) EG
© (\forall int c;
@ (lexists int $q ; c * q==a$) EG夭 (lexists int $q ; c * q==b$);
© (lexists int $q ; c * q==$ \result));
@*/
public static int $\operatorname{gcd}(i n t \quad a$, int $b)$
So lets start proving ...

Loop-Invariant

What is the loop invariant?
The algorithm changes a and b, but the gcd of a and b should stay the same.

In fact the set of common divisors of a and b never changes.
This suggests the following invariant:

$$
\forall d .(d|\backslash \circ \operatorname{ld}(a) \wedge d| \backslash \circ \operatorname{ld}(b) \leftrightarrow d|a \wedge d| b)
$$

In JML this can be specified as:
$/ * @$ loop_invariant $a>=0$ Eஞ b >= 0 छఆ
© (\forall int d; true;
© ((exists int q; $\operatorname{lold}(a)==q * d)$
© EG (lexists int q; $\operatorname{lold}(b)==q * d)$
@ く==>(lexists int q; $a==q * d$) \}ظ (lexists int q; $b==q * d$)
(©) ;
@ assignable a, b;
© decreases $a+b$;
@*/

