Formal Methods for Java

Lecture 12: Dynamic Logic

Jochen Hoenicke

$\stackrel{๊}{5}$ Software Engineering
 Albert-Ludwigs-University Freiburg

December 7, 2011

The K§y_Project

- Theorem Prover
- Developed at University of Karlsruhe
- http://www.key-project.org/.
- Theory specialized for Java(Card).
- Can generate proof-obligations from JML specification.
- Underlying theory: Sequent Calculus + Dynamic Logic

Rigid vs.Non-Rigid Functions vs. Variables

KeY distinguishes the following symbols:

- Rigid Functions: These are functions that do not depend on the current state of the program.
- $+,-, *:$ integer \times integers \rightarrow integer (mathematical operations)
- $0,1, \ldots$: integer, TRUE, FALSE : boolean (mathematical constants)
- Non-Rigid Functions: These are functions that depend on current state.
- . [•] : $T \times$ int \rightarrow (array access)
- .next : $\top \rightarrow \top$ if next is a field of a class.
- $i, j: T$ if i, j are program variables.
- Variables: These are logical variables that can be quantified. Variables may not appear in programs.
- x, y, z

Example

$$
\forall x . \mathrm{i}=x \rightarrow\langle\{\text { while }(\mathrm{i}>0)\{\mathrm{i}=\mathrm{i}-1 ;\}\}\rangle \mathrm{i}=0
$$

- $0,1,-$ are rigid functions.
- $>$ is a rigid relation.
- i is a non-rigid function.
- x is a logical variable.

Quantification over i is not allowed and x must not appear in a program.

Builtin Rigid Functions

- $+,-, *, /, \%, j d i v, j m o d:$ operations on integer.
- ..., $-1,0,1, \ldots$, TRUE,FALSE, null: constants.
- (A) for any type A : cast function.
- A :: get gives the n-th object of type A.

Updates in KeY

The formula $\langle\mathrm{i}=t ; \alpha\rangle \phi$ is rewritten to

$$
\{i:=t\}\langle\alpha\rangle \phi
$$

Formula $\{\mathrm{i}:=t\} \phi$ is true, iff
ϕ holds in a state, where the program variable i has the value denoted by the term t.
Here:

- i is a program variable (non-rigid function).
- t is a term (may contain logical variables).
- ϕ a formula

Simplifying Updates

If ϕ contains no modalities, then $\{x:=t\} \phi$ is rewritten to $\phi[t / x]$.
A double update $\left\{x_{1}:=t_{1}, x_{2}:=t_{2}\right\}\left\{x_{1}:=t_{1}^{\prime}, x_{3}:=t_{3}^{\prime}\right\} \phi$ is automatically rewritten to

$$
\left\{x_{1}:=t_{1}^{\prime}\left[t_{1} / x_{1}, t_{2} / x_{2}\right], x_{2}:=t_{2}, x_{3}:=t_{3}^{\prime}\left[t_{1} / x_{1}, t_{2} / x_{2}\right]\right\} \phi
$$

Example: $\langle\{i=j ; j=i+1\}\rangle i=j$

$$
\begin{aligned}
& \langle\{i=j ; j=\mathrm{i}+1\}\rangle \mathrm{i}=\mathrm{j} \\
\equiv & \{\mathrm{i}:=\mathrm{j}\}\{\mathrm{j}:=\mathrm{i}+1\} \mathrm{i}=\mathrm{j} \\
\equiv & \{\mathrm{i}:=\mathrm{j}, \mathrm{j}:=\mathrm{j}+1\} \mathrm{i}=\mathrm{j} \\
\equiv & \mathrm{j}=\mathrm{j}+1
\end{aligned}
$$

\equiv false
or alternatively

$$
\begin{aligned}
& \langle\{i=j ; j=\mathrm{i}+1\}\rangle \mathrm{i}=\mathrm{j} \\
\equiv & \{\mathrm{i}:=\mathrm{j}\}\{\mathrm{j}:=\mathrm{i}+1\} \mathrm{i}=\mathrm{j} \\
\equiv & \{\mathrm{i}:=\mathrm{j}\} \mathrm{i}=\mathrm{i}+1 \\
\equiv & \mathrm{j}=\mathrm{j}+1
\end{aligned}
$$

\equiv false

Rules for Java Dynamic Logic

- $\langle\{i=j ; \ldots\}\rangle \phi$ is rewritten to: $\{i:=j\}\langle\{\ldots\}\rangle \phi$.
- $\langle\{\mathrm{i}=\mathrm{j}+\mathrm{k} ; \ldots\}\rangle \phi$ is rewritten to: $\{i:=j+k\}\langle\{\ldots\}\rangle \phi$.
- $\langle\{\mathrm{i}=\mathrm{j}++; \ldots\}\rangle \phi$ is rewritten to: $\left\langle\left\{\right.\right.$ int $\left.\left.\mathrm{j}_{-} 0 ; \mathrm{j}_{-} 0=\mathrm{j} ; \mathrm{j}=\mathrm{j}+1 ; \mathrm{i}=\mathrm{j} _0 ; \ldots\right\}\right\rangle \phi$.
- $\langle\{$ int $\mathrm{k} ; \ldots\}\rangle \phi$ is rewritten to: $\langle\{\ldots\}\rangle \phi$ and k is added as new program variable.

Proving Programs with Loops

Given a simple loop:

$$
\langle\{\text { while }(n>0) n--;\}\rangle n=0
$$

How can we prove that the loop terminates for all $\mathrm{n} \geq 0$ and that $\mathrm{n}=0$ holds in the final state?

Method (1): Induction

To prove a property $\phi(x)$ for all $x \geq 0$ we can use induction:

- Show $\phi(0)$.
- Show $\phi(x) \Longrightarrow \phi(x+1)$ for all $x \geq 0$.

This proves that $\forall x(x \geq 0 \rightarrow \phi(x))$ holds.

The rule int_induction

The KeY-System has the rule int_induction

$$
\begin{gathered}
\Gamma \Longrightarrow \Delta, \phi(0) \quad \Gamma \Longrightarrow \Delta, \forall X(X \geq 0 \wedge \phi(X) \rightarrow \phi(X+1)) \\
\Gamma, \forall X(X \geq 0 \rightarrow \phi(X)) \Longrightarrow \Delta \\
\Gamma \Longrightarrow \Delta
\end{gathered}
$$

The three goals are:

- Base Case: $\Longrightarrow \phi(0)$
- Step Case: $\Longrightarrow \forall X(X \geq 0 \wedge \phi(X) \rightarrow \phi(X+1))$
- Use Case: $\forall X(X \geq 0 \rightarrow \phi(X)) \Longrightarrow$

Method(2): Loop Invariants with Variants

Induction proofs are very difficult to perform for a loop

$$
\langle\{\text { while }(C O N D) B O D Y ; \ldots\}\rangle \phi
$$

The KeY-system supports special rules for while loops using invariants and variants.

The rule while_invariant_with_variant_dec

The rule while_invariant_with_variant_dec takes an invariant inv, a modifies set $\left\{m_{1}, \ldots, m_{k}\right\}$ and a variant v. The following cases must be proven.

- Initially Valid: $\Longrightarrow i n v \wedge v \geq 0$
- Body Preserves Invariant:

$$
\begin{gathered}
\Longrightarrow\left\{m_{1}:=x_{1}\|\ldots\| m_{k}:=x_{k}\right\}(\operatorname{inv} \wedge[\{b=C O N D ;\}] b=\text { true } \\
\rightarrow\langle B O D Y\rangle \text { inv }
\end{gathered}
$$

- Use Case:

$$
\begin{gathered}
\Longrightarrow\left\{m_{1}:=x_{1}\|\ldots\| m_{k}:=x_{k}\right\}(\operatorname{inv} \wedge[\{b=C O N D ;\}] b=\text { false } \\
\rightarrow\langle\ldots\rangle \phi
\end{gathered}
$$

- Termination:

$$
\begin{aligned}
\Longrightarrow\left\{m_{1}:=x_{1}\|\ldots\| m_{k}:=x_{k}\right\} & (\text { inv } \wedge v \geq 0 \wedge[\{b=C O N D ;\}] b=\text { true } \\
& \rightarrow\{\text { old }:=v\}\langle B O D Y\rangle v \leq \text { old } \wedge v \geq 0
\end{aligned}
$$

Case Study: Euklid's Algorithm

Java code to compute gcd of non-negative numbers:

```
public static int gcd(int a, int b) {
        while (a != 0 && b != 0) {
            if (a>b)
            a=a-b;
            else
                b = b - a;
        }
        return (a>b) ? a : b;
}
```

Lets prove it with KeY-System.

Specification

We first need a specification.

Definition (GCD)

Let a and b be natural numbers. A number d is the greatest common divisor (GCD) of a and b iff
(1) $d \mid a$ and $d \mid b$
(2) If $c \mid a$ and $c \mid b$, then $c \mid d$.
$d \mid a$ means d divides a.
$d \mid a: \Leftrightarrow \exists q . d * q=a$

JML Specification

The specifation can be converted to JML:
/*@
© requires $a>=0$ EGG $b>=0$;
© ensures \result >= 0;
© ensures (lexists int q; $\operatorname{Iresult*q~==~a)~EG~}$
© (lexists int q; \result*q == b) EG
© (\forall int c;
@ (lexists int $q ; c * q==a$) EG夭 (lexists int $q ; c * q==b$);
© (lexists int $q ; c * q==$ \result));
@*/
public static int $\operatorname{gcd}(i n t \quad a$, int $b)$
So lets start proving ...

Loop-Invariant

What is the loop invariant?
The algorithm changes a and b, but the gcd of a and b should stay the same.

In fact the set of common divisors of a and b never changes.
This suggests the following invariant:

$$
\forall d .(d|\backslash \circ \operatorname{ld}(a) \wedge d| \backslash \circ \operatorname{ld}(b) \leftrightarrow d|a \wedge d| b)
$$

In JML this can be specified as:
$/ * @$ loop_invariant $a>=0$ Eஞ b >= 0 छఆ
© (\forall int d; true;
© ((exists int q; $\operatorname{lold}(a)==q * d)$
© EG (lexists int q; $\operatorname{lold}(b)==q * d)$
@ く==>(lexists int q; $a==q * d$) \}ظ (lexists int q; $b==q * d$)
(0) ;
@ assignable a, b;
© decreases $a+b$;
@*/

