
Formal Methods for Java
Lecture 12: Dynamic Logic

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

December 7, 2011

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 1 / 18

The -Project

Theorem Prover

Developed at University of Karlsruhe

http://www.key-project.org/.

Theory specialized for Java(Card).

Can generate proof-obligations from JML specification.

Underlying theory: Sequent Calculus + Dynamic Logic

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 2 / 18

http://www.key-project.org/

Rigid vs.Non-Rigid Functions vs. Variables

KeY distinguishes the following symbols:

Rigid Functions: These are functions that do not depend on the
current state of the program.

+,−, ∗ : integer × integers → integer (mathematical operations)
0, 1, . . . : integer , TRUE ,FALSE : boolean (mathematical constants)

Non-Rigid Functions: These are functions that depend on current
state.

·[·] : >× int → > (array access)
.next : > → > if next is a field of a class.
i, j : > if i, j are program variables.

Variables: These are logical variables that can be quantified.
Variables may not appear in programs.

x , y , z

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 3 / 18

Example

∀x .i = x → 〈{while(i > 0){i = i− 1; }}〉i = 0

0,1,− are rigid functions.

> is a rigid relation.

i is a non-rigid function.

x is a logical variable.

Quantification over i is not allowed and x must not appear in a program.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 4 / 18

Builtin Rigid Functions

+,−,∗,/,%,jdiv ,jmod : operations on integer .

. . . ,−1, 0, 1, . . ., TRUE ,FALSE , null : constants.

(A) for any type A: cast function.

A :: get gives the n-th object of type A.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 5 / 18

Updates in KeY

The formula 〈i = t;α〉φ is rewritten to

{i := t}〈α〉φ

Formula {i := t}φ is true, iff
φ holds in a state, where the program variable i has the value denoted by
the term t.
Here:

i is a program variable (non-rigid function).

t is a term (may contain logical variables).

φ a formula

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 6 / 18

Simplifying Updates

If φ contains no modalities, then {x := t}φ is rewritten to φ[t/x].

A double update {x1 := t1, x2 := t2}{x1 := t ′1, x3 := t ′3}φ is automatically
rewritten to

{x1 := t ′1[t1/x1, t2/x2], x2 := t2, x3 := t ′3[t1/x1, t2/x2]}φ

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 7 / 18

Example: 〈{i = j; j = i + 1}〉i = j

〈{i = j; j = i + 1}〉i = j

≡{i := j}{j := i+1}i = j

≡{i := j, j := j + 1}i = j

≡j = j + 1

≡false
or alternatively

〈{i = j; j = i + 1}〉i = j

≡{i := j}{j := i+1}i = j

≡{i := j}i = i + 1

≡j = j + 1

≡false

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 8 / 18

Rules for Java Dynamic Logic

〈{i = j; ...}〉φ is rewritten to:
{i := j}〈{...}〉φ.

〈{i = j + k; ...}〉φ is rewritten to:
{i := j + k}〈{...}〉φ.

〈{i = j + +; ...}〉φ is rewritten to:
〈{int j 0; j 0 = j; j = j + 1; i = j 0; ...}〉φ.

〈{int k; ...}〉φ is rewritten to:
〈{...}〉φ and k is added as new program variable.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 9 / 18

Proving Programs with Loops

Given a simple loop:

〈{while(n > 0) n--; }〉n = 0

How can we prove that the loop terminates for all n ≥ 0 and that n = 0
holds in the final state?

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 10 / 18

Method (1): Induction

To prove a property φ(x) for all x ≥ 0 we can use induction:

Show φ(0).

Show φ(x) =⇒ φ(x + 1) for all x ≥ 0.

This proves that ∀x (x ≥ 0→ φ(x)) holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 11 / 18

The rule int induction

The KeY-System has the rule int induction

Γ =⇒ ∆, φ(0) Γ =⇒ ∆, ∀X (X ≥ 0 ∧ φ(X)→ φ(X + 1))
Γ,∀X (X ≥ 0→ φ(X)) =⇒ ∆

Γ =⇒ ∆

The three goals are:

Base Case: =⇒ φ(0)

Step Case: =⇒ ∀X (X ≥ 0 ∧ φ(X)→ φ(X + 1))

Use Case: ∀X (X ≥ 0→ φ(X)) =⇒

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 12 / 18

Method(2): Loop Invariants with Variants

Induction proofs are very difficult to perform for a loop

〈{while(COND)BODY ; . . .}〉φ

The KeY-system supports special rules for while loops using invariants and
variants.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 13 / 18

The rule while invariant with variant dec

The rule while invariant with variant dec takes an invariant inv , a modifies
set {m1, . . . ,mk} and a variant v . The following cases must be proven.

Initially Valid: =⇒ inv ∧ v ≥ 0
Body Preserves Invariant:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ [{b = COND; }]b = true

→ 〈BODY 〉inv

Use Case:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ [{b = COND; }]b = false

→ 〈. . .〉φ

Termination:

=⇒ {m1 := x1‖ . . . ‖mk := xk}(inv ∧ v ≥ 0 ∧ [{b = COND; }]b = true

→ {old := v}〈BODY 〉v ≤ old ∧ v ≥ 0

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 14 / 18

Case Study: Euklid’s Algorithm

Java code to compute gcd of non-negative numbers:

public static int gcd(int a, int b) {
while (a != 0 && b != 0) {

if (a > b)
a = a - b;

else
b = b - a;

}
return (a > b) ? a : b;

}

Lets prove it with KeY-System.

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 15 / 18

Specification

We first need a specification.

Definition (GCD)

Let a and b be natural numbers. A number d is the greatest common
divisor (GCD) of a and b iff

1 d |a and d |b
2 If c |a and c |b, then c |d .

d |a means d divides a.
d |a :⇔ ∃q.d ∗ q = a

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 16 / 18

JML Specification

The specifation can be converted to JML:
/*@
@ requires a >= 0 && b >= 0;
@ ensures \result >= 0;
@ ensures (\exists int q; \result*q == a) &&
@ (\exists int q; \result*q == b) &&
@ (\forall int c;
@ (\exists int q; c*q == a) && (\exists int q; c*q == b);
@ (\exists int q; c*q == \result));
@*/

public static int gcd(int a, int b)

So lets start proving . . .

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 17 / 18

Loop-Invariant

What is the loop invariant?

The algorithm changes a and b, but the gcd of a and b should stay the
same.

In fact the set of common divisors of a and b never changes.
This suggests the following invariant:

∀d .(d | \old(a) ∧ d | \old(b)↔ d |a ∧ d |b)

In JML this can be specified as:
/*@ loop_invariant a >= 0 && b >= 0 &&
@ (\forall int d; true;
@ (\exists int q; \old(a) == q*d)
@ && (\exists int q; \old(b) == q*d)
@ <==>(\exists int q; a == q*d) && (\exists int q; b == q*d)
@);
@ assignable a, b;
@ decreases a+b;
@*/

Jochen Hoenicke (Software Engineering) Formal Methods for Java December 7, 2011 18 / 18

