
Formal Methods for Java
Lecture 30: Conclusion

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Feb 17, 2012

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 1 / 21

Topics

Lecture Topics

1 Introduction to JML and JLS
2–3 Operational Semantics
4–5 JML
6–7 ESC/Java

8–10 Ownership/Friendship and Invariants
11–12 Sequent Calculus and Dynamic Logic
13–18 Proving with KeY
19–22 Jahob
23–29 Java Pathfinder

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 2 / 21

Motivations

Quality

Leads to better understood code.

Different view point reveals bugs.

Formal proof can rule out bugs entirely.

Productivity

Error detection in early stages of development.

Modular specifications allow reuse of components.

Documentation, maintenance.

Automatic test case generation.

Clearer specification leads to better software.

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 3 / 21

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

Q reflects the current dynamic state (heap and local variables).

Act is the executed code.

Idea from: D. v. Oheimb, T. Nipkow, Machine-checking the Java
specification: Proving type-safety, 1999

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 4 / 21

State of a Java Program

The state of a Java program consists of a flow component and valuations
for local and global (heap) variables.

Q = Flow × Heap × Local

Flow ::= Norm|Ret|Exc〈〈Address〉〉
Heap = Address → Class × seq Value

Local = Identifier → Value

Value = Z,Address ⊆ Z
A state is denoted as q = (flow , heap, lcl), where flow : Flow , heap : Heap
and lcl : Local .

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 5 / 21

Rules of Operational Semantics

(Norm, heap, lcl) e1.v1−−−−→ q q e2.v2−−−−→ q′

(Norm, heap, lcl)
e1*e2.(v1·v2) mod 232−−−−−−−−−−−−−−→ q′

(Norm, heap, lcl) st1−−→ q q st2−−→ q′

(Norm, heap, lcl) st1;st2−−−−→ q′

(Norm, heap, lcl) e.v−−−→ q q bl1−−→ q′

(Norm, heap, lcl)
if(e) bl1elsebl2−−−−−−−−−→ q′

, where v 6= 0

. . . and many more.

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 6 / 21

Rules for Exceptions

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) throw e−−−−−→ (Exc(v), heap′, lcl ′)

A null-pointer dereference works like a throw statement:

(Norm, heap, lcl) e.0−−−→ q′

q′
throw new NullPointerException()−−−−−−−−−−−−−−−−−−−−→ q′′

(Norm, heap, lcl) e.fld.v−−−−−→ q′′
,where v is some arbitrary value

Propagating exceptions:

(flow , heap, lcl) α−−→ (flow , heap, lcl), where flow 6= Norm

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 7 / 21

JML

public class ArrayOps {

private /*@ spec_public @*/ Object[] a;

//@ public invariant 0 < a.length;

/*@ requires 0 < arr.length;
@ ensures this.a == arr;
@*/

public void init(Object[] arr) {
this.a = arr;

}
}

ESC/Java2

Warnings

Daikon

Data trace file

JML Annotated Java

JACK, Jive, Krakatoa,
KeY, LOOP

Correctness proof
Class file

jmlc

Unit tests

jmlunit

jmldoc

Web pages

Bogor

Model checking
XVP

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 8 / 21

The Java Modelling Language (JML)

JML is a behavioral interface specification language (BISL) for Java

Proposed by G. Leavens, A. Baker, C. Ruby:
JML: A Notation for Detailed Design, 1999

It combines ideas from two approaches:

Eiffel with it’s built-in language for Design by Contract (DBC)
Larch/C++ a BISL for C++

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 9 / 21

Tools for JML

http://www.jmlspecs.org/

Release can be downloaded from
http://sourceforge.net/projects/jmlspecs/files

JML compiler (jmlc)

JML runtime assertion checker (jmlrac)

External Tools:

ESC/Java

KeY

and many more . . .

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 10 / 21

http://www.jmlspecs.org/
http://sourceforge.net/projects/jmlspecs/files

Run-time Checking with jmlrac

Advantages of run-time checking:

Easy to use.

Supports a large sub-language of JML.

No false warnings.

Disadvantages of run-time checking:

Coverage only as good as test cases that are used.

Does not prove absence of errors.

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 11 / 21

Static Checking with ESC/Java

Advantages of static checking:

Easy to use.

No test cases needed.

Better coverage than runtime checking.

Can detect missing specification.

Disadvantages of static checking:

Only a small subset of JML supported.

Many spurious warnings (not complete).

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 12 / 21

Theorem Proving with KeY

Advantages of static checking:

Prove of correctness.

Both sound and complete (modulo Peano Axioms).

Disadvantages of static checking:

Very difficult to use.

Can require interactive proving.

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 13 / 21

Model-checking with Java Pathfinder

Advantages of model-checking:

Almost as easy as testing.

More exhaustive than simple testing.

Disadvantages of model-checking:

State explosion problem.

Runtime vs. coverage.

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 14 / 21

Suggested order

1 Run-time checking, e.g. jmlrac and jmlunit.

2 Static checking, e.g. ESC/Java.

3 Model-checking, e.g. Java Pathfinder

4 Theorem proving, e.g. KeY.

Ensures that most bugs are already found before starting with theorem
proving. Some prefer doing static checking before run-time checking (no

test cases needed).

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 15 / 21

JML Keywords

Recall the meaning of the following Keywords:

requires

ensures

assignable

signals/signals_only

behavior/also

normal_behavior/exceptional_behavior

pure

invariant

loop_invariant/decreases

nullable/non_null

spec_public

model/ghost

represents/in

assert/assume

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 16 / 21

The Invariant Problem

public class SomeClass {
/*@ invariant inv; @*/

/*@ requires P;
@ ensures Q;
@*/

public void doSomething() {

assume(P);
assume(inv);

...code of doSomething...

assert(Q);
assert(inv);

}
}

public class OtherClass {
public void caller(SomeObject o) {
...some other code...

assert(P);

o.doSomething();

assume(Q);

}
}

Only sound if invariant cannot be invalidated.

E.g., with the pack/unpack mechanism.

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 17 / 21

Sequent Calculus and Dynamic Logic

φ1, φ2 =⇒ ψ1, ψ2

What are the rules of sequent calculus? Are they sound/complete?

Hoare-Triples vs. φ =⇒ 〈α〉ψ and φ =⇒ [α]ψ

What is the meaning of 〈α〉φ?

What are the rules for dynamic logic?

What is the while invariant with variant rule?

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 18 / 21

Jahob

What is Jahob?

Difference to ESC/Java?

Difference to KeY?

What does Jahob internally?

How are the verification conditions generated?

How are they checked?

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 19 / 21

Java Pathfinder

What is Model-Checking?

Difference to ESC/Java and Jahob?

Difference to KeY?

How can we write our own listeners?

How can we use choice generators?

What is partial order reduction?

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 20 / 21

What should you have learned

How to give formal semantics to Java/JML (e.g. operational
semantics).

How to give pre-/post-conditions in JML.

What is the relation between assume, assert and ensures, requires?

What is run-time checking? Why is it useful? What are the limits?

What is static checking (ESC/Java)? Why useful? What are the
limits?

What are the problems of class invariants and how to solve them.

What is soundness and completeness? How does it apply to software
verification.

How to prove with KeY-System. How can loops be checked?

How can verification conditions be generated from a program with
assumes and asserts?

How can these verification conditions be proven? Which tools exist?

Jochen Hoenicke (Software Engineering) FM4J Feb 17, 2012 21 / 21

