O]
-
-
)
@®©
()]
LL
-
O]
>
O
@)

David Harel
The Weizmann
Institute of
Science and
i-Logix

Eran Gery

i-Logix

Executable Object
Modeling with
Statecharts

Statecharts, popular for modeling system behavior in the structural
analysis paradigm, are part of a fully executable language set for modeling
object-oriented systems. The languages form the core of the emerging

Unified Modeling Language.

systems should be behaviorally expressive

and rigorous as well as intuitive and well
structured. Thus, any modeling approach must be
detailed and precise enough to produce fully exe-
cutable models and permit the automatic synthesis
of efficient code in languages such as C++.

Most OO modeling methodologies specify a
model through graphical notations. Entity-relation-
ship-like diagrams typically specify object classes
and their interrelationships, and there is some way
to describe what objects do and how they interact.
Most methodologies also adopt a state-based for-
malism to specify behavior, using statecharts' or
some sublanguage thereof.

However, many methodologies fail to rigorously
define the semantics of the languages. Without a rig-
orous semantic definition, precise model behavior
over time is not well defined and full executability
and automatic code synthesis is impossible.
Adopting a richly expressive behavioral language
like statecharts makes modeling easier, but requires
great care in defining the way it integrates with the
other parts of the model. Statecharts must capture
not only the state of the object as a precondition to
service requests, but also the dynamics of the
object’s internal behavior in responding to those
requests and in maintaining relationships with other
objects.

These issues are complicated and go beyond rec-
ommending a modeling approach or methodol-
ogy—they are language design concerns, requiring
rigorous mathematical underpinnings. Both syntax
and semantics must be fully worked out: any possi-
ble combination of constructs must be clearly char-
acterized as syntactically legal or illegal, and each
legal combination must be given a unique and for-
mal meaning.

M odels for the development of object-oriented

0018-9162/97/$10.00 © 1997 IEEE

To address these needs, we embarked on an effort
to develop an integrated set of diagrammatic lan-
guages for object modeling, built around statecharts,
and to construct a supporting tool that produces a
fully executable model and allows automatic code
synthesis. The language set includes two constructive
modeling languages (languages containing the infor-
mation needed to execute the model or translate it
into executable code).

e Object-model diagrams specify system struc-
ture by identifying object classes and their mul-
tiplicities, object relationships and roles, and
subclassing relationships.

» Statecharts describe system behavior. A state-
chart attached to a class specifies all behavioral
aspects of the objects in that class.

In addition, we support message sequence charts,
also called sequence diagrams, as a reflective language
(which captures parts of the thinking that goes into
building the model—behavior included—or is used to
derive and present views of the model to aid analysis).
Message sequence charts describe the possible ways a
system behaves in terms of scenarios or use cases.?

Although we focus on the language set in this arti-
cle, we believe our supporting tool, Rhapsody, is a
critical element of our work. Rhapsody demon-
strates we have a fully worked out behavioral
semantics, allowing our models to be fully exe-
cutable and enabling full code synthesis. The side-
bar “From Structural Analysis to Object Orien-
tation” describes some issues we faced in applying
statecharts to the OO paradigm.

Our language set constitutes the core part of the
Unified Modeling Language, a flexible, general-pur-
pose modeling methodology (http://www.rational.
com/uml). UML unifies three popular approaches

July 1997

Figure 1. A railcar
system. The enlarge-
ment shows the struc-
ture of each terminal.

to OO modeling—the Booch method,> OMT,* and
OOSE>—with statecharts as its heart. It thus seems
positioned to become the Object Management
Group’s standard modeling language. Partly as a
result of our recent collaboration with the UML team,
our language set and Rhapsody are consistent with
UML. For example, the semantics of composite
objects in UML are defined as we define them in this
article.

Both the language set and Rhapsody deal with active
objects and multiple-thread concurrency, but we have
decided to focus on single-thread concurrency here.
We have also kept the presentation of both the syntax
and semantics informal, and our descriptions are not
exhaustive. A complete definition of both is in prepa-
ration, including the way Rhapsody translates any syn-
tactically legal model into executable code.

Our current implementation framework is based
on C++, which is natural given its status in the OO
language community. However, this is more a matter
of convenience, so that models contain actions and
operations written directly in the implementation lan-
guage. This, in turn, makes it relatively easy to plug
in a framework based on another language, such as
Ada, Smalltalk, Java, or even on a set-based lan-
guage.’ However, what programming language is cho-

Entrance
and exit
segments

Terminal 1 [~

Terminal 6

Control
center

Terminal 5

Terminal 4

Computer

sen as the implementation framework has little bear-
ing on our modeling and analysis approach. Rhapsody
supports the modeling process in its entirety, so once
we chose C++ for our initial implementation, it
became natural to use it for the detail level of the
model, too.

RAILCAR SYSTEM

To explain the properties of our language set, we use
the automated rail-car system in Figure 1, inspired by
Vered Gafni. Six terminals are located on a cyclic path.
Each pair of adjacent terminals is connected by two rail
tracks, one for clockwise and one for counterclockwise
travel. Several railcars are available to transport pas-
sengers between terminals. A control center receives,
processes, and sends system data to various components.

As the enlargement of Terminal 6 shows, each ter-
minal has a parking area containing four parallel plat-
forms. Each platform can hold a single car. The four
rail tracks (two incoming and two outgoing) are con-
nected to a rail segment that can link to any one of the
four platforms.

The terminal has a destination board for passenger
use (not shown), containing a push button and indi-
cator for each destination terminal. Each car is
equipped with an engine and a cruise-controller for
maintaining speed. The cruiser can be off, engaged, or
disengaged. The car is to maintain maximum speed as
long as it never comes within 80 yards of any other
car. A stopped car will continue its travel only if the
smallest distance to any other car is at least 100 yards.
A car also has its own destination board, similar to
the one in the terminal. The control center communi-
cates with various system components—receiving,
processing, and providing system data.

Three possible scenarios, or use cases,? stated as cus-
tomer requirements, are

e Car approaching terminal. When the car is 100
yards from the terminal, the system allocates it a
platform and an entrance segment, which con-
nects it to the incoming track. If the car is to pass
through without stopping, the system also allo-
cates it an exit segment. If the allocation is not
completed within 80 yards from the terminal, the
system delays the car until all is ready.

e Car departing terminal. A car departs the termi-
nal after being parked for 90 seconds. The sys-
tem connects the platform to the outgoing track
via the exit segment, engages the car’s engine, and
turns off the destination indicators on the termi-
nal destination board. The car can then depart
unless it is within 100 yards of another car; if so,
the system delays departure.

« Passenger in terminal. A passenger in a terminal
wishes to travel to some destination terminal, and

there is no available car in the terminal traveling
in the right direction. The passenger pushes the
destination button and waits until a car arrives.
If the terminal contains an idle car, the system
will assign it to that destination. If not, the system
will send a car in from some other terminal. The
system indicates that a car is available with a
flashing sign on the destination board.

We use message sequence charts to describe such sce-
narios. They are especially good for describing collab-
orations, since one chart typically includes several
objects. Using Rhapsody, system modelers can check
the consistency of a chart against the model itself, pro-
vided they have used statecharts to specify model behav-
ior (described later). Message sequence charts are also
an appealing reflective formalism. For example, mod-
elers can set up a chart to show the animated progress
of interobject communication during model execution.

OBJECT-MODEL DIAGRAMS

Object-model diagrams specify a system’s classes
and their structural relationships. Conceptually, there
is one diagram per system. However, a modeler will
typically construct and view that diagram in several
parts. The object-model diagram uses the same lan-
guage for classes and instances.

An object-model diagram is similar to an entity-
relationship diagram viewed as an object model except
that it is hierarchical and features higraph encapsula-
tion ¢ (boxes inside other boxes), which denotes a
strong composite class aggregation. Directed edges
represent relationships; an undirected edge is the same
as a two-way directed edge. Classes and relationships
can have typical kinds of multiplicity information. For
consistency with UML and other class structure nota-
tions, object-model diagrams also allow a weaker kind
of aggregation—part-of , a special association rela-
tionship between the aggregate and its components,
depicted with a diamond icon**—which our examples
here do not include.

Railcar system

Figure 2a shows a partial object-model diagram for
the railcar system with four main classes (two of
which, Car and Terminal , are composites). The num-
bers in the boxes indicate multiplicity information
(instances): one ControlCenter ~ and six Terminal s.
The other classes contain an asterisk, which means
they can have unlimited instances. The figure also
shows four many-to-one bidirectional association rela-
tionships and two unidirectional ones. When there is
no relationship name or role, the instances refer to
their relatives by its . Thus, a passenger can refer to
itsTerminal and a terminal will have a set of
itsPassenger s. Edges that have a role name are

6
Terminal 5
it 1
" 14 A stopsAt 1
Control-
Passenger Center
1 * 1
Car
(a)
Terminal 6
Platform-* DestPaneI1
1 Manager
2
1. —— ™| Entrance
Car- 2
Handler \ 5
0.1 5 Exit
1 Exits-
Manager
1 stopsAt
1
Car
Proximity-1 . !
Sensor Cruiser
Occupancyl !
Sensor DestPanel
(b)

referred to differently; a Car can refer to the set of
terminals it stopsAt , which could be different from
the set ofitsTerminal . Directionality dictates the
ability to reference instances: In Figure 2, a terminal
cannot refer to itsCar s, for example.

To make referral along relationship links easy, we
allow standard kinds of navigation expressions. For
example, the navigation expression Passenger ->
itsCar -> stopsAt refers to the set of terminals
at which the car carrying the passenger is scheduled to
stop. Also, because System always refers to
an explicit composite object that encloses the
entire model, the six Terminal s can be referred
to from the top level of the model by System ->
itsTerminal[1:6]

Figure 2b shows the six components of the com-
posite Terminal , and the four components of Car .

Figure 2. (a) High-
level object-model
diagram for the rail-
car system, and (b)
more detailed
diagram of the com-
posites Terminal
and Car .

July 1997

An object
model
diagram

also contains
information
that helps
initialize

the system’s
dynamic
behavior.

The Entrance and Exit objects are software drivers
for the relevant rail segments. PlatformManager
and ExitsManager allocate platforms and exits to
CarHandler . In contrast to the other classes,
CarHandler is a concept that does not come from
the problem domain, but is introduced by a domain
expert during modeling. It handles the transactions
between a Car and a Terminal A special
CarHandler iscreated whenever a car approaches a
terminal; it is destroyed when the car departs. As such,
it serves as a proxy object for the car within the ter-
minal. The four components within Car have no links,
since they do not collaborate. The primitive object
ProximitySensor , for example, sends events to the
Car’ s behavior (to its statechart) on the basis of the
distance to the approached Terminal

A composite class can refer to its components
directly. We also allow direct links (and hence direct
communication) between a component object and
objects outside its composite parent. Figure 2a does
not show the relationship between Car and
CarHandler , but the more detailed Figure 2b does.
We could have represented this relationship in Figure
2a as well by having an edge leading from Car to a
stubbed end lying within the interior of Terminal

Initialization

Because an object-model diagram describes classes
and their structure, it appears to be concerned with
static aspects only. However, it also contains infor-
mation that helps initialize the system’s dynamic
behavior.

Defining behavioral semantics specifically enough to
enable model execution and full code synthesis hinges
on two things: initialization and dynamics over time.
Initialization is the way the model starts out—which
object instances are constructed at the start and how
their attributes and relationships with other objects are
set up. Dynamics concerns the way the model behaves
when running. The model’s status can change because
of changes in the data item values, in the object’s state
(caused by triggers like events and operation invoca-
tion), and in the system’s structure (such as the instan-
tiation and deletion of objects and the establishment
and modification of links among them).

The main tasks in initialization are to set up the ini-
tial composite structures, define associations, and sup-
ply initialization scripts where necessary.

Composite structures. When a model starts execut-
ing, its composite structures are initialized by the cre-
ation of instances from classes with fixed integer
multiplicities. Creation happens recursively down the
tree of composites (from a composite class to its com-
ponents), and new instances are created for each
instance of a composite class. Thus, in Figure 2a, one
ControlCenter andsix Terminal s are created at

Computer

the start. In Figure 2b, within each Terminal, two
Entrance s, two Exit s, one PlatformManager
one ExitsManager and one DestPanel are cre-
ated at the start. Components with unspecified mul-
tiplicity (those with asterisks) will create no instances
spontaneously, so no Cars or CarHandler s, for
example, are created at the start, unless a default ini-
tialization script is present, as we explain below.

This feature of composite classes remains valid
beyond initialization, extending throughout the
model’s dynamic behavior: Whenever an instance of a
composite class is created, the appropriate instances of
the components with fixed multiplicities are created.
(If multiplicities are specified by integer variables, the
current values are used.) Similarly, when the compos-
ite is destroyed, so are all its components.

Associations. Another important part of initializa-
tion is setting up relationships, or defining how
instances collaborate. If we consider associations as
mechanisms to bootstrap the model, we can catego-
rize them as unambiguous, ambiguous but bounded,
and unworkable. An example of an unambiguous
association is the link between Terminal and
ControlCenter in Figure 2a. It is many-to-one, but
the multiplicities on either end of the edge match
those of the associated classes, both in the number of
actual links and in the identity of the linked instances.
Consequently, all six Terminal s start out being asso-
ciated with the ControlCenter : They can refer to
itsControlCenter , Which, in turn, can refer to all
itsTerminal s.

If there was no ““6”” at the end of the edge, the asso-
ciation would be ambiguous but bounded; any subset
of the six Terminal s could be associated with the
unigue ControlCenter but there would still be a
well-defined upper bound (all six connected) and a
well-defined lower bound (none connected).

An example of an unworkable association is the left-
hand one between Car and Terminal in Figure 2a:
a Terminal must be associated with each Car, but
there is no information to set up this association.

In the ambiguous but bounded associations, we
took a greedy approach to semantics, although
Rhapsody users have some flexibility in the degree of
greed. The greedy approach sets things up using
canonical mappings. For example, if each class has »
instances in a symmetric one-to-one relationship, the
greedy approach will associate them in matching pairs,
A() to B(i), for each 1<i <n. If the relationship is
reflexive (B=A), the greedy approach matches them in
cyclic order, A(%) to A(+1), with A(n+1) identified with
A(1).

The rules for setting up relationships also extend to
dynamics. As the model runs, whenever objects are
instantiated or destroyed, all relevant associations are
reevaluated and set up as just described. Thus, for exam-

ple, if an instance of CarHandler is somehow created,
it will be able to refer to itsPlatformManager and
itsExitsManager , since those links will have become
unambiguous. Also, since the multiple links to
Entrance and Exit will also have become unambigu-
ous, it should be able to refer to itsEntrance[1] and
itsEntrance[2] ; likewise for Exit s. The current ver-
sion of Rhapsody does not support this dynamic reeval-
uation, but a future version will.

Changes may also occur in the current set of
instances and their links, such as when objects are cre-
ated or destroyed. These can be prescribed by several
kinds of actions that can appear in statecharts, as we
describe later.

Initialization scripts. For initialization to be com-
plete, the modeler must often supply additional
information. Here, we have left the number and
location of Cars unspecified. We could have pro-
vided a multiplicity specification for Car in the
object-model diagram, say 12, but we would have
still had to resolve the ambiguous links with the six
Terminal s—for example, where is the car located
initially? (that is, what isitsTerminal ~ ?). Instead,
we provide the implicit top-level System object with
an initialization script, which is carried out once at
the start. Each object may have an initialization
script in its statechart, as we describe later. Here is
the script for the rail-car system, decreeing the cre-
ation of 12 new Cars, located in adjacent pairs in
the six Terminals

for (int car = 0; car < 6; car++)
{System -> itsCar[2*car] =
new Car(System ->
itsTerminal[car]) ;
System -> itsCar[2*car+l] =
new Car(System ->
itsTerminal[car])}

STATECHARTS

Statecharts describe both how objects communi-
cate and collaborate and how they carry out their own
internal behavior. They must also reflect important
OO issues like inheritance.

Object communication and collaboration

One of the main technical issues we faced was what
mechanism to use for interobject interaction. High-
level mechanisms, like events, are easier to model and
are therefore more appropriate for analysis; lower
level ones, like operations, are easier to translate into
efficient code and are therefore closer to design.’ In
an attempt to compromise, we adopted the two mech-
anisms: An object can generate an event, which is
queued, to be handed to the target server object in its
turn. An object can also directly invoke an operation
of another object, causing it to carry out an appro-
priate method, and perhaps return a value.

Event generation. An object—the client—can gen-
erate an event and address it to some other object,
the server. To refer to the server, the client can use a

From Structural Analysis
to Object Orientation

Statecharts were developed by David
Harel in 1983 as a visual formalism for spec-
ifying raw reactive behavior. The next step
was to integrate statecharts into a general sys-
tem-modeling approach in a way that would
provide fully executable models, dynamic
analysis, and code synthesis—a task quite dif-
ferent from using statecharts on their own
because the combined aspects of a system’s
description can be subtle and slippery.

Accordingly, Harel and colleagues built
a full language set around statecharts that
was based on the function-oriented, struc-
tured-analysis paradigm.>? Statecharts,
used for behavioral description, were
closely integrated with activity-charts, a
structured language for functional decom-
position and dataflow. However, because
structural analysis methods tend to suffer
a discontinuity in their transition to design

and reuse, many people recommended
complementing function-based approaches
with ones that follow the object-oriented
paradigm. This change has proven to be
one of the most significant recent advances
in software engineering.

The basic idea is to model the structural
properties of classes in a clear hierarchical
manner, and to integrate the resulting
description with a precise specification of
behavior over time, using statecharts.
Because classes represent dynamically
changing collections of concrete objects
(instances)—and because the structure itself
is dynamically changing—the model must
address the initialization of and reference
to real object instances; the delegation of
messages; the creation and destruction of
instances; the initialization, modification,
and maintenance of links that represent
association relationships; and so on.

The model must also address aggrega-

tion and inheritance from a behavioral
point of view. All this makes the problem
of combining structure and behavior much
harder in an OO-based framework. And it
is particularly delicate in the realm of
highly reactive systems, which are charac-
terized not by data-intensive computation
but by control-intensive, often time-criti-
cal, behavior.

References

1. D. Harel and M. Politi, Modeling Reactive
Systems with Statecharts, McGraw-Hill,
New York (to be published); for abridged
version, see The Languages of STATE-
MATE, tech. report, i-Logix, Andover,
Mass., 1991.

2. D. Harel et al., “STATEMATE: A Work-
ing Environment for the Development of
Complex Reactive Systems,”” IEEE Trans.
Soft. Eng., Apr. 1990, pp. 403-414.

July 1997

Operations
are
synchronous:
The thread of
control is
passed
immediately
to the called
object.

legal navigation expression, or use the name directly
if the server is one of its components in a composite
or a regular aggregation. In any case, the reference
denoted generically is

{server> ->
gen (<eventname> ({parameters>))

One special server to which a client can address an
event isthis , which stands for the client itself. In fact,
if there is no server, this becomes the default. An
interesting consequence is that expressions of the form
gen(<eventname>(<parameters>)) that appear
in an object’s statechart are really just standard events
broadcast within and limited to the present state-
chart.!

When it is generated, the event gets queued on a
system queue (a multiple-thread system will have a
separate queue for each thread). Thereafter, when the
client reaches a stable situation (all orthogonal com-
ponents are in states, and none are left along transi-
tions), the system resumes its continuous process of
applying the events from the queue to the appropri-
ate server objects, one by one, in order. Servers use
the following simple syntax as a trigger to act on an
event:

{eventname> ({parameters>)

Actual parameters represent the data that comes
with the event, and the server may use formal para-
meters, as we describe later. Because we are dealing
with a single-thread model here, the dynamic seman-
tics of this client-server setup are somewhat easier to
define, since at most one instance will be active at any
time. If more than one instance can act on an event,
the semantics imposes no instance order. Thus, the
actual order is implementation-dependent.

Now to the important issue of event delegation.
Assume that server A is a composite object. Who gets
to respond to an event e addressed to A? Is it just A
via its own statechart, or is it perhaps A’s component
objects (some or all)? To address this issue, any com-
posite class can be endowed with a simple forwarding
spec that determines the delegation strategy for the
various events. We place this spec inside the top-level
state of the class’s statechart, as we shall see later for
Terminal . By default, an event not appearing in A's
forwarding spec will be known to A’s statechart only.
The other two possibilities are for A to delegate e to
one or more of its components explicitly or to delegate
it to them all by broadcast. The syntax for these in
the forwarding spec is simply delegate(e,B) (or
delegate(e,B,C,...)) and broadcast(e) ,
respectively. In either case, A’s statechart is implicitly
included. The delegation then continues inductively

Computer

down the tree of composites, using the components’
own forwarding specs. This delegation mechanism is
not in the current version of Rhapsody, but it will
appear in a future version.

This additional semantic notion for composite
classes means that events can be communicated to
other objects in many ways—from direct object-to-
object communication to full or limited broadcast. In
a full broadcast communication, for example, e is
addressed to the System and broadcast(e) is
included in all forwarding specs. Our railcar example
uses default forwarding almost exclusively, meaning
that events are always sent to an explicitly named
object’s statechart. The one exception is the event
clearDest , which the Terminal delegates to its com-
ponent DestPanel

Events are themselves entities of the model, and can
be organized in a generalization/specialization hierar-
chy. Thus, an object’s response to a general event
means that it can also respond to any of its more spe-
cialized events.

This asynchronous event-based communication
mechanism supports client-server relationships in a
straightforward way, and modelers do not have to
worry about each aspect of sequencing. When an event
is sent, the system’s queuing scheduler takes care of
passing it to the server, and the server deals with it at
its own pace.

Operation invocation. Operation invocation causes
the immediate execution of the method associated
with it in the server object’s statechart. The syntax of
invocation is the same as that for C++ method acti-
vation:

{server> ->
{operationname> ({parameters>)

The expression that triggers the method in the called
object is just like the one for events:

{operationname> ({parameters>)

The semantics, however, is synchronous. The thread
of control is passed immediately to the called object,
which proceeds to execute the relevant method with-
out delay. The client’s progress is frozen until the
method has executed, at which point the client picks up
the thread and resumes its work. The server is deemed
to have completed the method when it reaches a stable
situation or when it returns a value using the imple-
mentation framework’s reply . We thus view opera-
tions as inherently synchronous (although some other
frameworks also allow asynchronous operation).

Operations are particularly beneficial when the
modeler wants to closely control sequencing or when
tight object synchronization is important. Efficiency

is another benefit: With direct invocation, modelers
avoid the overhead of queuing and get a simpler and
faster translation into an OO programming language.
In fact, if we leave out events altogether, basing the
dynamics on operations alone, the entire setup takes
on an almost exclusive C++ flavor: The objects are
really C++ objects, their interaction mechanism is as
in C++, and so on.

Object behavior

Obijects use a statechart to describe modal behav-
ior—behavior that can be different under different cir-
cumstances or in different modes. Thus, states (or state
configurations) can be viewed as abstract situations
in an object’s life cycle or as temporary object invari-
ants.

Full vs. partial statecharts. Some authors’ use state-
charts mainly to specify the pre- and post-conditions
of operations in the form of abstract states. Others®
discard concurrent states (orthogonality), claiming
that concurrency is already inherent in an OO sys-
tem because different object instances can exist and
can operate simultaneously. Some criticize the broad-
cast mechanism, claiming that it is unrealistic for
many systems. Our adoption of statecharts is lock,
stock, and barrel. That is, we use the full power of
statecharts, including state hierarchy, multilevel
orthogonal components, history connectors, and
(internal) broadcast communication. We can justify
having orthogonality and broadcasting in our state-
charts on several points:

« Concurrent objects and orthogonal states are quite
different. Orthogonality in statecharts is not nec-
essarily for specifying components that correspond
to different subobjects. It enables highly compact
descriptions of complex specification logic.
Modelers can use orthogonal states to decompose
large state spaces naturally into independent (or
almost independent) parts. They can also use them
to describe complicated transactions or scenarios
with many parts, in which several requests to other
objects are made simultaneously as part of the
treatment of some incoming request and so on.
Moreover, in a multiple-thread model, different
threads can execute simultaneously in different
orthogonal components of the same object.

e The broadcasting mechanism in statecharts has
nothing to do with interobject communication.
It is limited to the scope of a single statechart, in
a single object instance. It makes specifying com-
plex internal behavior easier.

< Orthogonality is crucial for inheritance. Adding
portions to a specified behavior to capture a more
specific subtype can be done most easily by
adding orthogonal components.

These points are especially obvious in large mod-
els.

Triggers and actions. Statecharts involve reactions
of the form

trigger[condition] /action-list

all parts of which are optional, in the usual statechart
manner.Y Such a reaction can adorn a transition
arrow or appear within a state’s reaction spec, as in the
bottom of Figure 3. In the latter case, it is reevaluated
(and triggered whenever relevant) as long as the state-
chart is in the state in question. A trigger is either an
event expression or an operation request. Actions are
sequences of event-generation expressions, operation
invocations, and C++ statements.

Some OO purists regard every action as a message;
we take a layered view: assignments to variables are
C++ statements, not messages. Conditions are also
taken from C++ and, again, this is consistent with
using the implementation framework language at the
detailed level of the model. All these elements may use
variables and expressions over data types, according
to the underlying application domain.

-
Car

new(term)/ setDest(term)/
itsTerm=term,;
itsCarhandler=
itsTerm -

assignCar(this)

destSelected

[stopsAt - iIsEmpty()]

(.
operating

[mode==stop]/
stopsAt -
remove (itsTerm)

@departure

alert100(term)/
itsTerm=term;

cruising

\ Reaction: destSelected(term)/stopsAt - add(term)

stopsAt - add(term)

Figure 3. Top-level statechart of Car.

July 1997

J waitArrivalOK

o
arrival

fwaitTermAck

/itsTerm — gen(arrivReq(this,direction));
mode=stopsAt - isin(itsTerm) ? stop:pass

arrivAck(carHandler)/
itsCarHandler=carHandler

alerted
Reactions:
[mode==pass]/ entering/
itsCarHandler - gen (departReq(direction)) Cruiser - gen(disengage())
exiting/
waitDepart Cruiser - gen(engage())
[mode==stop]
J

watchAIert\

alert80

N

alertStop/

-

Cruiser - gen(desengage())

Figure 4. Arrival portion of Figure 3.

The special internal conditions of statecharts, such
as in(state) , and various kinds of timeouts and
delays, such as tm(n) , are also allowed."?

()
departure
()
/itsCarHandler -
gen(departReq(direction)) j
waitExit departAck
[Cruiser - gen (engage());
itsTerm - gen (clearDest())
[Cruiser - gen(start())
<>
started
syncCruiser
. J
. J

Figure 5. Departure portion of Figure 3.

Computer

Among the actions that can appear in statecharts
are those for creating and deleting instances. Again,
they take their format from our C++-based imple-
mentation framework:

{object> = new <classname>
({parameters>)
delete <object>

Next, we have actions for adding and removing
components from a composite instance:

<{new component> = add<{component
name> ()

remove<{component name> ({component
type>)}

For example, the action stopsAt->add(term)
appears in the statechart of Car in Figure 3, adding
the terminal term to the set associated with a given
car by the stopsAt relationship. The car is how
scheduled to stop at term also.

Finally, the implementation framework has actions
for maintaining association relationships by adding
an object to the other end of a relationship and remov-
ing one from it:

{rolename> -> add(Kobjectname>)
{rolename> -> remove({objectname>)

The default entrance of the statechart’s top level
state is the initialization entrance for any newly cre-
ated instance of the object. A reaction attached to the
top-level default arrow serves as an initialization script
for instances of that class. (Such initialization scripts
appear in Figures 3-6).

Semantics. The semantics we adopt for OO state-
charts is close to what we defined for statecharts in
Statemate.!° As in Statemate, reactions to events are
step by step: the events and actions generated in one
transition do not take effect until the next step, after
a stable situation has been reached. However, in
Statemate, all triggers are constantly attentive, and
generated events reach their destinations instantly.
Our approach here is different and is aimed at achiev-
ing a more realistic design and implementation envi-
ronment. Thus, we have omitted several features of
Statemate, such as event conjunctions, which are
harder to implement and do not seem to arise natu-
rally when modeling with a practical design in mind.
Also, events in OO statecharts are handed to server
objects one by one from the queue, in single-event
processing. Another difference is in priorities. When
an event can trigger several conflicting transitions,
OO statecharts give priority to lower level states. In
statecharts in Statemate, higher level states take pri-
ority.

The main difference, however, is the role of transi-
tions. In the OO setup, transitions are treated in a run-
to-completion manner® Thus, in contrast to
Statemate, a transition here will “freeze” in mid-exe-
cution, waiting for actions to complete. Moreover, we
require that all parts of a transition be fully executed
before the statechart becomes stable and the system
can respond to another event.

In addition, the method executed by the server in
response to an operation invocation must be provided
in its entirety along a transition. We require this
because once the statechart enters a stable state con-
figuration the method terminates and the thread of
control returns to the calling object’s statechart. In
addition, parameters from events and operations are
valid and available only during execution of the (pos-
sibly compound and multiple) transition within which
the event or operation invocation was received. Once
the statechart has stabilized, these values disappear.

From the client’s view, the difference between event
generation and operation invocation is very important.
When the client’s statechart generates an event, it retains
its thread of control for the rest of the transition, run-
ning to completion until the situation stabilizes. In con-
trast, when the client’s statechart invokes another
object’s operation, its execution freezes in midtransi-
tion, and the thread of control is passed to the called
object. Clearly, this might continue, with the called
object calling others, and so on. However, a cycle of

N
CarHandler

new(car,dir) / direction=dir; itsCar = car;
itsPlatformManager - gen(allocPlatform());

waitPlatform

platformAllocated(number) / platform = number;
itsEntrance[direction] - gen(moveTo(platform))

moveCompleted / itsCar - gen(arrivAck(this))

departReq(dir) / direction = dir;
ItsExitsManager - gen(allocExit(direction))

exitAllocated /
itsExit(direction) — gen(moveTo(platform))

waitComplete

moveCompleted /
itsCar — gen(departAck())

waitDepart

tm(10) / itsExitManager — gen(freeExit(direction));
itsPlatformManager - gen(freePlatform(platform))

\. J

Figure 6. Statechart of CarHandler.

invocations that leads back to the same object instance
is illegal, and an attempt to execute it will abort.

Scenario walk-through

Figures 3 through 6 give the main statecharts for
the rail-car system. Figures 4 and 5 are subcharts of
the statechart for Car in Figure 3. The @ prefix in
Figure 3 denotes the presence of a more detailed state-
chart. Because of space limitations and for clarity of
discussion, we drew the subcharts separately here.
They actually plug into the @arrival and @depar-
ture blobs in Figure 3.

July 1997

All the usual statechart features! are allowed (such
as circled C’s for conditional branching), as well as
termination with self-destruction of the instance in
question (circled Ts). The circled T in Figure 6, for
example, indicates that a CarHandler destroys itself
when its task is complete.

The statecharts for Terminal and Control Center
are modeless, containing reactions and forwarding
information only. They are given respectively as

Reactions:
arrivReq(car,dir)/ new CarHandler
(car,dir);
assignCar(car)/ reply=new
CarHandler (car,1);
destSelected/
if (itsCar->isEmpty())
(itsControlCenter)
->gen(sendCar (this))
Forwarding:
delegate(clearDest, DestPanel)

and

sendCar/
for each (car, itscar) {
if (car->idle()
car->gen(setDest(sendCar
->term)) 1}

We now walk through the “car approaching termi-

nal’” scenario. Car has five main modes, as Figure 3
shows. Assume the car is in its cruising state,
approaching a terminal. It leaves that state when it
receives the event alertl00(term) from its -
ProximitySensor (behavior not described here),
alerting the car that it is 100 yards from the terminal.
(As we explained earlier, Car actually receives the event
from the system’s queue manager, but for simplicity,
we describe the scenario as if events are sent and
received directly.) The car setsitsTerm to be the term
it received as a parameter with the alertl00 event,
and enters its arrival state, described in Figure 4.

Although the real work is carried out by wait-
TermAck (left orthogonal component), watchAlert
(right orthogonal component) makes sure the car is
more than 80 yards from the terminal. If it comes too
close, it disengages its Cruiser , depicted by the reac-
tion carried out upon entering the alerted state.

Meanwhile, the Car sends an arrival request to the
Terminal by generating the event arrivReq -
(this,direction) , providing its own identity and the
direction it is traveling. (We omit the internal details of
direction , which is computed inside the standby
state of Car.) The Car also checks if the Terminal it is
approaching is in the set of terminals it stopsAt , set-
ting the modeto stop or pass accordingly. The reac-
tion at the bottom of the Car statechart in Figure 3 adds
aterminal to the list of scheduled stops whenever a des-
tination is selected. The destSelected eventis gener-
ated when a passenger presses a button on either the
car’s or the terminal’s DestPanel

Inheritance: Structural or
Behavioral Conformity?

What exactly does it mean for an object of
type B to be also an object of the more gen-
eral type A? In virtually all approaches to
inheritance in the literature, the is-a rela-
tionship between classes A and B entails a
basic minimal requirement of interface con-
formity, or subclassing. This means that we
should be able to plug in a B wherever we
could have used an A by requiring that B’s
interface, what it can be asked to do, is con-
sistent with A’s. It also means that B’s inter-
nal structure, such as its set of composites
and aggregates, must be consistent with that
of A.

But this says little about the behavioral
conformity of A and B. It requires only that
we be able to replace B with A without caus-
ing incompatibility; nothing is guaranteed
about the way B will actually operate when
it replaces A. In fact, B’s response to an

event or an operation invocation might be
totally different from A’s. In reality, sub-
typing, that is, guaranteeing full behavioral
conformity between a type and its subtype,
is technically very difficult, and much
research is still needed.

Fortunately, however, most modelers do
not expect the inheritance relationship
between A and B to mean that B can do
anything A can do and in the very same
way. They are satisfied with guaranteeing
that anything A can do, B can be asked to
do—that B looks as if it is doing what A
does even if it might actually be doing so
differently with different results. One rea-
son for this attitude is that inheritance is
introduced largely to enable reuse, really
an issue of convenience and savings: We
want to be able to spend less effort (and to
decrease the chance of error) when respec-
ifying things that have already been speci-
fied for a more abstract class.

Object-oriented programming languages
do not deal with abstract behavior at all, and
therefore their inheritance mechanisms do
not address behavioral issues. In C++, for
example, a class derived from a base class can
turn the original behavior upside down. In
contrast, our behavior-intensive language set
forces us to address the inheritance of behav-
ior one way or another. The crucial issue, of
course, is the statecharts: How should A’s
statechart relate to B’s to yield some kind of
conformity and encourage reuse?

The OO community generally agrees
that the modeler should somehow con-
struct B’s statechart from A’s, but recom-
mendations differ. It is possible to show,
very easily in fact, that none of the recom-
mended restrictions cannot prevent behav-
ior from changing radically. Consequently,
no reasonably liberal proposal, including
ours, neither can nor was meant to establish
full behavioral conformity.

An arrivReq event causes the Terminal to
instantiate a new CarHandler , with the car’s iden-
tity and its direction as parameters—as shown in the
reaction of Terminal ’s modeless statechart given
earlier. Moving to Figure 6, the CarHandler state-
chart starts its life by executing its initialization
script, attached to the default entrance arrow. There
it saves the two parameters in variables and proceeds
to ask for a platform to be allocated. Once the
CarHandler receives confirmation of allocation and
a platform number , which it saves in platform it
asks for the entrance rail segment of that direction
to be moved to the platform in question. Once that
is confirmed, making it possible for the car to glide
neatly into the terminal, CarHandler generates the
event arrivAck for the car to act on, with its own
identity as a parameter. The car, which waited
patiently in its waitEnter state (Figure 4), instanti-
ates the link to itsCarHandler and branches off to
stop or make a departReq to its handler—depend-
ing on whether it is scheduled to stop at the terminal
or to pass through. If it must stop, the car waits for
analertStop from itsProximitySensor ,and
then leaves its arrival state. Going back to Figure
3, Car removes the current terminal from its list of
stopsAt terminals, and enters either idle or
standby , depending on whether it is scheduled to
visit any more terminals. If the car is to pass through
the terminal (Figure 4), it waits for its departReq to
be followed by a departAck from its handler, and
resumes cruising (Figure 3). Upon receiving the
departReq , the CarHandler (Figure 6) goes
through a process like the one it went through to set
up the car’s entrance, causing an exit rail to be con-
nected to the platform. It then notifies the car that
all is ready by a departAck , waits 10 seconds, frees
the exit and platform, and then self-destructs.

Inheritance

Inheritance is a key topic in the OO paradigm. We
allow the is-a subclassing relationship between
object classes to be specified in the object-model dia-
gram in the usual way: a triangular icon on connect-
ing edges. The main concern, however, is to establish
a relationship between the statecharts of a parent class
(A) and its inherited subclass (B).

Statechart restrictions. In addressing inheritance,
we have adopted the approach described in the side-
bar “Inheritance: Structural or Behavioral Con-
formity?”’—careful modifiability but not full
behavioral conformity—with code synthesis pre-
dominantly in mind. Thus, the restrictions we
describe for constructing B’s statechart from A4’ were
designed to be as helpful as possible when it comes
to reusing parts of the code generated from A.

The main guideline, which previous authors have

p
MaintenanceCar

stopManual / op

startManual / op

[stopsAt
—isEmpty()]

[operating _{_ _é/

setDest(term)/
stopsAt - add(term)

startManual / op

Figure 7. Partial
also adopted,’ is to base the two statecharts on the
same underlying state/transition topology. Thus, B
inherits all A’s states and transitions. Although these
cannot be removed, certain refinements are allowed.
States can be modified in three ways:

tenanceCar.

« Decompose a basic (atomic) state by Or (into sub-
states) or by And (into orthogonal components).

* Add substates to an Or state.

= Add orthogonal components to any state.

The third way is the most important because it is used
to enrich A’s behavioral capabilities. Transitions can be
added to the statechart, and certain modifications are
allowed in the original inherited ones: The target state
of an inherited transition can be changed, even to a com-
pletely different state (not necessarily to a substate of
the original state), but the source state must not be
changed. This difference between source and target is
somewhat less restrictive than it sounds: We can effec-
tively change the source to a lower level state by adding
a new transition with the same target but with the lower
level state as the source. Because the statechart seman-
tics gives the transition leading out of the lower state
priority, we have what we want.

In addition, if the transition is labeled by trig -
ger[condition]/action-list , we can modify the
condition and change the action-list by deleting
some actions (but retaining the order on those remain-
ing) and adding new ones. Although we cannot explic-
itly remove a transition, we can do so implicitly by
making its guard false.

Railcar system statecharts. In modeling the railcar sys-
tem, suppose we want to add a maintenance car. We
could do this by having a generic Car and two inherit-
ing subclasses, PassengerCar and Maintenance Car.
To construct their statecharts, we would first remove the
standby state in Figure 3 so that its entering transitions
would enter @departure directly. This would be the
statechart for the modified Car . Next, the statechart of
PassengerCar would inherit the states and transitions
of the modified Car statechart and would add the
standby state, which, together with some additional
changes, would be identical to the original Car
statechart in Figure 3. We would then have a different
version of the Car statechart for MaintenanceCar , as
Figure 7 shows. The new version includes the special
manual state, in which instructions to the engine are

July 1997

statechart of Main -

given directly by the driver. We have left out many details
in Figure 7, including some of those inherited from the
modified Car statechart. Rhapsody lets modelers dis-
play such statecharts in more useful ways, such as show-
ing the inherited elements in light gray and highlighting
new or modified elements.

intend to explore several research areas. One of

the more interesting is inheriting behavior. We
plan to carefully investigate the various levels of
behavioral conformity possible in a setup such as
ours, and to address their feasibility, enforceability,
and computational complexity.

Another research topic is the possible productive
relationships between statecharts and message
sequence charts. For example, we would like the abil-
ity to synthesize a first efficient version of the state-
charts for an object model from the scenarios given
in the message sequence charts.

Rhapsody, which is available from i-Logix, is
another area of future work. Although we did not
focus this article on Rhapsody per se, we believe we
have communicated its essence through our descrip-
tions of the language set and through our commit-
ment to executability, analysis, and code synthesis in
Statemate.!! In addition to supporting the language
set with the same dedication to such behavioral issues
(ObjectTime® is another such tool), Rhapsody
addresses many methodological issues—in ways that
are in line with UML and recommendations by other
authors.’->% However, we continue to enhance
Rhapsody’s power and usefulness and plan to extend
it to best accommodate the ways engineers approach
the development of complex systems.

As far as code synthesis goes, we believe we are on
the right track. We hope that the code Rhapsody gen-
erates will help bring high-level modeling closer to the
desired final product. [

T o continue the work we have described, we

Acknowledgments

We thank Michal Politi, Alex Nerst, and especially
Michael Hirsch, for numerous helpful discussions and
ideas.

David Harel’s research was supported in part by
grant 7096/3 from the Israel Academy of Sciences.

References
1. D. Harel, “Statecharts: A Visual Formalism for Com-
plex Systems,” Sci. Computer Prog., July 1987, pp. 231-
274; also see Tech. Report CS84-05, The Weizmann
Inst. of Science, Rehovot, Israel, 1984.
2. 1. Jacobson, Object-Oriented Software Engineering: A

Computer

Use Case Driven Approach, Addison Wesley, Reading,
Mass., 1992.

3. G. Booch, Object-Oriented Analysis and Design, with
Applications (2nd ed.), Benjamin/Cummings, San
Mateo, Calif., 1994.

4. J. Rumbaugh et al., Object-Oriented Modeling and
Design, Prentice Hall, New York, 1991.

5. S. Cook and J. Daniels, Designing Object Systems:
Object-Oriented Modelling with Syntropy, Prentice
Hall, New York, 1994.

6. D. Harel, “On Visual Formalisms,” Comm. ACM, May
1988, pp. 514-530.

7. D. Coleman, F. Hayes, and S. Bear, “Introducing
Objectcharts, or How to Use Statecharts in Object Oriented
Design,” IEEE Trans. Soft. Eng., Jan. 1992, pp. 9-18.

8. B. Selic, G. Gullekson, and P. Ward, Real-Time Object-
Oriented Modeling, John Wiley & Sons, New York,
1994.

9. D. Harel and M. Politi, Modeling Reactive Systems with
Statecharts, McGraw-Hill, New York (to be published);
for abridged version, see The Languages of STATE-
MATE, tech. report, i-Logix, Andover, Mass., 1991.

10. D. Harel and A. Naamad, ““The STATEMATE Semantics
of Statecharts,” ACM Trans. Software Eng. Methodol-
ogy, Oct. 1996, pp. 293-333.

11. D. Hareletal., “STATEMATE: A Working Environment
for the Development of Complex Reactive Systems,”
IEEE Trans. Soft. Eng., Apr. 1990, pp. 403-414.

David Harel is the William Sussman professor of
mathematics at The Weizmann Institute of Science
and a cofounder of i-Logix Inc., Reading, Mass. His
research interests are in computability and complex-
ity theory, logics of programs, database theory, sys-
tems engineering, and visual languages. Harel received
a BSc in mathematics and computer science from Bar-
llan University, an MSc in computer science from Tel-
Aviv University, and a PhD in computer science from
the Massachusetts Institute of Technology. He received
ACM’s 1992 Karlstrom Outstanding Educator Award
and is a fellow of the ACM and the IEEE.

Eran Gery is a project manager at i-Logix Israel Ltd.,
and is the principal software architect of the Rhapsody
tool described in this article. His research interests are
software architecture, modeling languages, behavioral
modeling, and analysis and design methods. Gery
received a BSc and an MSc in computer science from
the Technion, Israel’s Institute of Technology.

Contact the authors at i-Logix Israel Ltd., Rehovot
76327, Israel; harel@wisdom.weizmann.ac.il; erang@
ilogix.co.il.

