
Generalizing Perspective-based Inspection to handle Object-
Oriented Development Artifacts

Oliver Laitenberger and Colin Atkinson
Fraunhofer Institute for Experimental Software Engineering

Sauerwiesen 6
6766 1 Kaiserslautern, Germany

+49 (0)6301707200
{ laiten, atkinson} @iese.fhg.de

ABSTRACT
The value of software inspection for uncovering defects early
in the development lifecycle has been well documented. Of the
various types of inspection methods published to date,
experiments have shown perspective-based inspection to be
one of the most effective, because of its enhanced coverage of
the defect space. However, inspections in general, and
perspective-based inspections in particular, have so far been
applied predominantly in the context of conventional
structured development methods, and then almost always to
textual artifacts, such as requirements documents or code
modules. Object oriented-models, particularly of the
graphical form, have so far not been adequately addressed by
inspection methods. This paper tackles this problem by first
discussing the difficulties involved in tailoring the
perspective-based inspection approach to object-oriented
development methods and, second, by presenting a
generalization of the approach which overcomes these
limitations. The new version of the approach is illustrated in
the context of UML-based object-oriented development.

Keywords
Software Inspection, Reading Techniques, Perspective-based
Inspection, Object-Orientation, Fusion, UML

1 INTRODUCTION
Since Fagan’s seminal work in 1976 [8], software inspection
has emerged as one of the most effective quality assurance
techniques in software engineering. Fagan, and others, have
shown that software inspection can lead to the detection and
correction of anywhere between 50 and 90 percent of the
defects in a software artifact [9], [ll]. Moreover, since
inspections can uncover defects shortly after they are
introduced, rework costs (i.e., the costs associated with
correcting defects) are considerably reduced. On average, the
introduction of code inspection reduces rework costs by 39
percent and the introduction of design inspection reduces
rework costs by 44 percent 1151.

A full inspection usually consists of numerous activities
including planning, defect detection, defect collection, and
defect correction. However, it is the defect detection activity,

Permission to ma1ie digital or hard copies ofall or part ol‘this work for
personal or classroom use is granted without fee provided that topics
are not made or distributed for profit or commercial advantage and that
COpiKS hear this notice and the fill1 citation on the first page. To copy
otlvmbisc, to republish, to post on servers or to redlstrihutc to lists.
requires prior specific permission and/or a fee.

ICSE ‘99 Los Angeles CA
Copyright ACM 1999 l-581 13-074-O/99/05.,.$5.00

or “reading” as it is commonly called, that is considered the
key part of an inspection [2] and which therefore needs to be
supported with adequate reading techniques. Moreover,
empirical evidence suggests that reading techniques rather
than inspection process variations have the biggest impact on
inspection effectiveness [22].

Several kinds of reading techniques have been defined in the
literature, the simplest of which is the ad-hoc reading
approach [8]. As its name implies, this technique provides no
explicit advice as to how to proceed, or what specifically to
look for, during the reading activity, so inspectors must resort
to their own intuition and experience to determine how to go
about an inspection. A significant improvement over the ad-
hoc approach is the so called checklist approach [111, in which
an inspector is at least given a list of questions to answer. The
checklist-based technique thus gives inspectors advice about
what to look for in an inspection.

The next level of sophistication is offered by scenario-based
reading techniques [2]. The basic idea of a scenario-based
reading technique is the use of so called scenarios that describe
how to go about finding the required information, as well as
what that information should look like. In doing so, scenario-
based reading techniques assign clear responsibilities to
inspectors and require each of them to take an active role in an
inspection. In these two ways, they are similar to active design
reviews suggested by Parnas and Weiss [21] for the inspection
of design artifacts. However, active design reviews provide
little if any guidance to inspectors about how to perform the
reading activity.

Of the several families of scenario-based reading techniques
defined to date [3], [6], [23], experiments’have shown the
Perspective-Based Reading (PBR)’ technique to be among the
most effective. The basic idea behind this approach is to
inspect an artifact from the perspectives of its individual
“customers”, with the assumption that collectively these will
increase the coverage of the defect space. In doing so, the PBR
technique synthesizes ideas that have already appeared in
previous articles on software inspection, but have never been
worked out in detail. For example, Fagan [8] reports that a
piece of code should be inspected by its real tester, while
Fowler [IO] suggests that each inspection participant should

1 .In the context of this paper, we use the term “perspective-based in-
spection” to refer to inspection processes that adopt the PBR tech-
nique for defect detection.

494

take a particular point of view when examining the work
product. Graden et al. [121 state that inspectors must denote
the perspective (customer, requirements, design, test,
maintenance) from which they have evaluated the deliverable.
Such viewpoint-oriented approaches follow the current
thinking on quality: everybody, even someone internal to an
analysis, design, or coding process, is considered to be a
customer and also has customers [171. Since customers are
interested in different quality factors or see the same quality
factor quite differently [20], a software artifact needs to be
inspected from each customer’s viewpoint.

Unfortunately, software inspections in general, and
perspective-based inspections in particular, have been used
primarily in connection with textual artifacts resulting from
conventional structured development processes, such as
requirements documents or code modules. Object-oriented
artifacts, particularly of the graphical from, have so far not
been adequately addressed by inspection methods. This
represents a problem for two reasons. First, over the past
decade object-oriented development methods have replaced
conventional structured methods as the embodiment of in
software development, and are now the approach of choice in
most new software development projects. Inspection methods
that are limited to conventional structured methods, therefore,
will become less and less relevant as these methods are
superseded. Second, despite its many beneficial features, low
defect density is not one of the strong points of the object-
oriented paradigm. On the contrary, some empirical studies
have shown that object-oriented artifacts are more error-prone
than functional ones [13], [14]. At least one reason for this
situation is that most of the leading object-oriented
development methods [4], [7], [24] lack comprehensive
reading techniques for inspection. Object-oriented methods
would, therefore, benefit enormously from the availability of
such techniques. We believe systematic, viewpoint-based
inspection approaches, such as the perspective-based
inspection approach, offers one of the best ways of
accommodating the complexity of object-oriented systems.

This papers aims to address the need for more mature
inspection approaches in object-oriented development by
generalizing the perspective-based inspection approach to
handle a wider range of development artifacts. To this end,
section 2 first identifies the limitations in the current
formulation of the PBR approach that prevent it from being
easily applicable in an object-oriented context. Section 3 then
presents a more general version of PBR which addresses the
identified shortcomings. Section 4 follows with an illustration
of how this can be applied in the context of a UML-based
object-oriented development project. Finally, Section 5
concludes.

2 LIMITATIONS OF THE CURRENT FORMULA-
TION OF PERSPECTIVE-BASED READING

To date, there have been two published applications of the
PBR technique. The original publication on PBR [3] describes
NASA’s use of the technique for the inspection of
requirements specifications, while the second [191 details how
a car parts manufacturing company applied the PBR technique
for the inspection of source code. While both of these
publications provided a useful working description of the PBR

concept, they were more concerned with the experimental
validation of the underlying viewpoint premise than on
providing a generally applicable definition of the technique.
They consequently adopted an interpretation of PBR which
best suited the immediate needs of the application in hand,
rather than focused on the subtleties involved in applying the
principle to a wide range of different development artifacts.

From these publications, it is possible to distil the following
working definition of the technique. In essence, the basic goal
of PBR is:

“to read a software artifact from the perspectives of the
artifact’s various customers for the purpose of identifying
defects.”

As an abstract concept, this definition is simple and clear
enough. The limitations in the current formulation of PBR
arise not from this definition per se, but rather from the way in
which researchers and practitioners interpret the key terms
“defect”, “customer”, “artifact”, and “to read”. Although the
existing interpretations of these terms work quite well in the
current publications, they are too “loose” for PBR to be
applied effectively in an object-oriented context. To better
understand the difficulties, we elaborate upon the various
interpretations in the following subsections before tackling
these issues by presenting more concise definitions.

Interpretation of “Defect”
In the current formulation of PBR the term “defect” has not
been precisely defined. In most existing inspection methods,
such as [8], [21], adefect is usually interpreted solely as a fault
in a software document that must be detected and repaired in
order for the software artifact to be correct. Such an
interpretation, however, limits software inspection, and
perspective-based inspection in particular, to correctness as
the only quality factor. However, this focus on correctness (or
the lack thereof) is unnecessarily restrictive. For example, the
maintainer of an artifact is not only interested in its
correctness, but also in the extent to which it embodies good
design practice and the ease with which it can be modified.
From such a perspective, an artifact might be correct, but may
be considered defective because it is too poorly constructed
for maintenance purposes.

Definition of Perspectives
The use of the term “customer” in the current formulation of
PBR causes two difficulties. First, a customer is usually a
consumer, or recipient, of an entity, so the use of this term to
define perspectives implies that an artifact is to be read only
from the viewpoint of “recipients” of the artifact. However, the
creators or developers of an artifact usually have just as much
interest in its quality as the recipients or consumers.

Second, the word “customer” also has an implication of
immediacy in a relationship which does not always apply in,
the context of software development. Often participants who
could not reasonably be viewed as customers also have an
interest in the quality of an artifact. For example, in Basili et
al. [3] a “User” is presented as an example of a perspective
from which to inspect a requirements document. However, can
a “User” really be regarded as a customer (i.e., immediate
consumer or recipient) of a requirements document? Not

495

really. Users often do not even see the requirements document
used to define a system.

In fact, in the examples given to date, all the perspectives are
defined with respect to standard roles in a software project, not
necessarily with respect to the immediate customers of the
artifact. If anything, these perspective are defined with respect
to the customers of the “system” as a whole rather than to the
specific artifact under examination.

Artifacts versus Descriptions
The problem of how to define the perspectives from which to
read an artifact is related to the deeper question of how the
artifacts themselves are defined. Software is unique among
engineering products in that strictly speaking it has no
concrete material manifestation. Whereas a civil engineer, for
example, can inspect the actual elements of a bridge that
results from his endeavours, or a mechanical engineer can
inspect the actual elements of an engine that he builds, a
software engineer cannot actually look at a piece of a software
system per se. He or she can only inspect representations, or
descriptions1 of the software product, such as design models
or source code.

Such a description of an artifact can be viewed as a reification
of the artifact which makes it tangible. Reification is a part of
the software development process and encompasses the
activities of describing artifacts, providing them in the form of
physical documents and packaging them.

It is not necessary to distinguish between software artifacts
and their descriptions in contexts where the following two
conditions both hold:

1. There is a one-to-one correspondence between an artifact
and its description.

2. An artifact has a fairly concrete manifestation in the final
delivered software product.

However, in circumstances where these are not true the
distinction is extremely important, and in fact is critical to the
effective formulation of software inspection in general, and
perspective-based inspection in particular. Both of these
conditions were true in the two existing applications in which
PBR has been used to date. In [3] there is a one-to-one
correspondence between a requirements document and the
system, and the latter obviously has a concrete manifestation
in the delivered product - in fact, it “is” the delivered product.
Similarly, in [I91 there is a one-to-one correspondence
between source code modules and functions, and the latter can
readily be identified in delivered executables. As a
consequence, the current version of PBR was formulated
under the assumption that these conditions are valid. Figure 1
illustrates this concept. It indicates that no distinction is made
between a software artifact and its description (because there
is assumed to be only a single description for each artifact)
when defining the perspectives from which to perform the
inspection.

1 .Various terms could have been used here, such as model, represen-
tation, or document, but we chose to use the word description
since it best conveys the idea of something that can be graphical
or textual.

Especially in the design phase of a project, however, there is
often a many-to-many relationship between the artifacts that
form part of a diagram, and their various descriptions. For
example, in SAISD a given function can appear in various data
flow diagrams or structure charts (i.e., can have various
descriptions), and conversely each such diagram can contain
various functions (i.e., various artifacts). Hence, this is a
many-to-many relationship. Similarly in most object-oriented
methods [4], [7], [24], a given abstraction, such as a class or
object, can be described in many class diagrams, and a class
diagram can contain many classes.

Moreover, modern development philosophies, such as object-
orientation, incorporate abstractions which have no concrete
realization in the final delivered software. With most object-
oriented languages, for example, even classes have no
existence in the final system, and these are much more
concrete than other abstractions, such as abstract classes,
which play an important role in many object-oriented
languages.

Figure 1: Assumption of PBR

Reading as Part of the Development Process
The reading process, and the scenarios which describe it, are
of course one of the key elements of the PBR approach. A
reading scenario tells an inspector how to go about reading an
artifact from a particular perspective and what to look for. In
the current formulation of PBR, the “&” scenarios place
a significant emphasis on the “creation” of models as well as
on their analvsis. For example, Basili et al. [3] state that “each
reader produces some physical model which can be analysed
to answer questions based on the perspective. For example, the
team member reading from the perspective of the tester would
design a set of tests for a potential test plan, the team member
reading from the perspective of the developer would develop
a high-level design, and the team member iepresenting the
user would create a user manual”.

There are two difficulties with this formulation of PBR. The
first is that it stretches the word “reading” beyond its natural
meaning. “Reading” implies the systematic examination of an
artifact’s description to extract and gain certain information
for a particular purpose (e.g., for detecting defects etc.).
However, a construction activity which corresponds to a major
phase of a development process, such as the creation of a high-
level design, would seem to go beyond simply “reading.”

The second, and more serious, problem arises when the
artifact that an inspector is required to create would normally
be created anyway, even in the abs,ence of inspections. It seems
reasonable that the inspector should be responsible for

496

creating artifacts which are used solely for the purpose of
inspections, but when an artifact would be created anyway
(perhaps just at a different point in the process) it seems
questionable to assign this responsibility to the inspector.
However, all the examples of “physical” models given in the
existing publications on PBR, such as those cited in the
previous section, involve entities which are generally regarded
as products of a software development project irrespective of
whether PBR is being used. A high-level design, for example,
is something that would normally be generated by a designer
as a part of a normal development process. If PBR requires an
insoector to generate this artifact as part of the reading process

an inspection, this must mean one of two things:

either the inspector is duplicating activities performed by
others. For example, the inspector creates a design for the
purpose of inspection which is later recreated by the
designer for the purpose of implementation, or
the inspector is performing activities which are normally
assigned to others. For example, the task of creating a
high-level design is normal performed by a designer
rather than an inspector.

A GENERALIZED VERSION OF PERSPECTIVE-
BASED READING

In this section we discuss ways of overcoming the difficulties
identified in the previous section, and present a more general
version of PBR which we believe contains the optimal set of
solutions to the identified issues. By addressing these
problems we aim to place the PBR technique on a more sound
footing, and make it scaleable to a larger range of development
artifacts and paradigms. The essence of this new version of
PBR is captured by the following working definition. The
basic goal of PBR is to:

“examine the various descriptions of a software artifact from
the perspectives of the artifact’s various stakeholders for the
purpose of identijjGngJlaws. ”

In the following subsections we explain the rationale for this
generalized definition of PBR by addressing, in turn, each of
the problems identified in the previous subsections.

Interpretation of “Defect”
To enable PBR to realize its full potential it is necessary to
remove the narrow focus on defects used in the current PBR
formulation. The most obvious way of achieving this is to
redefine the word “defect” to reflect the broadened
interpretation. However, since this term has such a well
established and accepted meaning [151, we prefer to introduce
a new term which subsumes the established concept. A “flaw”
is defined to be:

“anyproperty of an artifact or description which stops itfrom
meeting its quality requirements.”

This definition recognizes the importance of all the quality
factors which may be important for a software artifact [20],
while still accommodating the traditional focus on defects
[16]. A defect is simply viewed as a special form of flaw in
which the quality criterion is correctness. By defining the goal
of PBR in terms of flaws rather than just defects, other quality
shortcoming can be the focus of an inspection. For example,

the failure to meet particular coupling or cohesion
requirements in the design of an artifact might be a flaw of
interest to a maintainer.

Definition of Perspectives
The problems arising from the use of the word “customer” to
define the perspectives can be easily solved by replacing it
with the word “stakeholder”. This word not only
accommodates the creators of an artifact as valid perspectives
from which it can be examined, but it also removes the
immediacy implied by the word “customer”. Thus, a
stakeholder can be any party interested in the quality of an
artifact, whether it be a software engineer playing a traditional
process role, or creators and customers of the artifact who have
a much more immediate role in its production and
consumption.

Artifacts versus Descriptions
As mentioned in the previous section, the assumption that an
artifact and its description are identical (or at least in a one-to-
one correspondence) is not generally valid. More often, there
is a one-to-many or a many-to-many relationship between
artifacts and descriptions. Consider, for example, artifacts that
typically appear in an object-oriented system, such as classes
or methods. During analysis and design these artifacts are each
described through a collection of diagrams (e.g., use-case
diagrams, class diagrams, statecharts diagrams etc.).
Similarly, a given instance of these types of diagrams typically
describes numerous classes and/or methods. Thus, there is
usually a many-to-many relationships between the artifacts
and the various descriptions of the artifacts.

In the absence of a one-to-one relationship, it is no longer
possible to regard an artifact and its description as a single
entity. Therefore, a major step in generalizing PBR is to
explicitly recognize the distinction between software artifacts
(e.g., systems, subsystems, classes, functions, objects,
attributes) and their descriptions (e.g., class diagrams, use case
diagrams, code modules etc.) and to define the reading
technique accordingly.

Separating artifacts from their descriptions, however, raises
the difficult question of how the inspection perspectives
should be defined. In the previous formulation of PBR, this
was not an issue because a software artifact and its description
were regarded as a single entity, so the stakeholders were
obviously defined with respect to this entity..However, when
artifacts and descriptions are regarded as separated entities, it
is no longer clear what the inspection perspectives should be
defined with respect to. Both alternatives are actually feasible.

As illustrated in Figure 2, the so called “artifact-oriented”
approach regards artifacts as the units of inspection, and the
perspectives are defined with respect to the artifacts. What this
means in practice is that an inspection is organized around, and
focuses upon, a software abstraction, such as a class, an object
or a method. In contrast, as illustrated in Figure 3, in the SO
called “description-oriented” approach, it is the descriptions
that are regarded as the units of inspection from which to
define the inspection perspectives. What this means in practice
is that an inspection is organized around, and focuses upon, a
particular software description, such as a class diagram, a use-

497

case diagram or a source code element.

<?B> pjiggj
Figure 2: Artifact-oriented Approach

Figure 3: Description-oriented Approach

At first sight the description-oriented approach might appear
to be the more natural, because it is the descriptions which are
inspected. It seems strange to organize an inspection around
artifacts which, by definition, can not actually be directly
inspected. However, there are three reasons why we believe
that the apparently counterintuitive artifact-oriented approach
is actually the most effective.

First, the ultimate goal of any quality assurance activity, such
as perspective-based inspection, is to ensure the quality of the
final artifact, that is, the quality of the final software system
and its components. In this respect, the descriptions of these
artifacts are only of secondary importance, and only provide
a means to an end. Second, although the relationship between
artifacts and descriptions is in general many-to-many, an
artifact usually has far fewer descriptions than a description
has artifacts. For example, in an object-oriented development
project, an artifact, such as a class or an operation, typically
has between five and ten different descriptions. However,
certain kinds of descriptions, such as class diagrams, may
describe dozens of artifacts (e.g., classes). This asymmetry in
the relationship cardinalities makes it a much more daunting
task to organize inspections around descriptions rather than
artifacts. Finally, defining perspectives with respect to
descriptions can be unnatural for certain roles. For example,
how can you inspect a class diagram from the perspective of
a tester, when a class diagram cannot be tested? This implies
that the perspectives (i.e., stakeholders) should not be defined
with respect to descriptions.

This reasoning assumes that the relationship between artifacts
and descriptions is well defined. In other words, given an
artifact, the development method makes it clear which
descriptions contain information about that artifact. Both

approaches still work if the relationship is less well defined,
but the successful completion of an inspection becomes much
more difficult, since it is easy to miss information which can
be critical for determining the quality of the artifact, or
alternatively, it may take excessive effort to locate all the
appropriate information (i.e., to find all the relevant
descriptions).

Although this discussion might seem. somewhat
philosophical, it is fundamental not only for perspective-based
inspection but for inspection techniques in general. However,
we have found little discussion on this issue in the literature
(e.g., [8], [18], [21]). Most existing inspection methods seem
to make no distinction between an artifact and its descriptions.

Reading as Part of the Development Process
The perspective-based approach to inspection requires the
inspector to gather and understand significant amounts of
information about the artifact under consideration. However,
it is not important who creates the descriptions from which this
information is obtained. Of greater significance is when the
required descriptions are created.

The problems in the current formulation of PBR with respect
to the development process can therefore be largely addressed
by returning the responsibility for creating the majority of
descriptions back to development engineers, and focusing the
reading activity on the extraction and examination of
information rather than on the creation of descriptions. This is
not a black/white solution because the extraction of
information itself can be interpreted as creating new
descriptions (i.e., collections or presentations of information).
However, by applying the principle that inspectors, as part of
the reading technique, should only create new descriptions if
they would not normally be created, a reasonable and
practicable separation of concerns is achieved. The creation of
descriptions or artifacts that would normally be created even
in the absence of inspections should be left to the usual
development engineer (e.g., designer, tester etc.). In small
projects this may actually turn out to be the same person as the
inspector (i.e., one person playing two roles), but this does not
diminish the value of conceptually separating concerns. If, to
support inspections, a description or artifact needs to be
created earlier than it normally would be (e.g., a test case) this
can be reflected in the corresponding scenario by requiring the
inspector to “arrange for” the description to be created, or
some equivalent language. This ensures thatthe description is
created when it is needed for the inspection, but still enables
the actual work of creation to be performed by someone other
than the inspector.

To support this approach, a more general form of scenario
structure is required. As depicted in Figure 4, we suggest that
this new form of scenario should consist of three major
sections: introduction, instructions and questions. This
structure is similar to the one described in the current
formulation of PBR, the difference being in the content,

498

rticularly of the instructions and questions sections.

PBR - Scenario
.

.

l.....?

2 ‘? ,.... .

>

Introduction explaining the
stakeholder’s interest in the
artifact

>

Instructions on extracting
the information relevant for
examination

>

Questions answered while
following the instructions

,
‘igure 4: Content and Structure of a PBR Scenario

The introduction describes the stakeholder’s interest in the
artifact and explains the quality factors most relevant for this
perspective.

The instructions describe what kind of descriptions an
inspector is to use, how to read the descriptions, and how to
extract the appropriate information from them. While
identifying, reading, and extracting information, inspectors
may already be able to detect some flaws. However, the
primary goal of the instructions are three-fold: First,
instructions help an inspector gain a focused understanding of
the artifact. Understanding involves the assignment of
meaning to a particular description and is a necessary
prerequisite for detecting more subtle and more difficult flaws,
which are often the expensive ones to remove if detected in
later development phases. Second, the instructions require an
inspector to actively work with the descriptions. Finally, the
attention of an inspector is focused on the most relevant
information, which avoids the swamping of inspectors with
unnecessary details.

Once an inspector has achieved an understanding of the
artifact, he or she can examine and judge whether the artifact
as described fulfils the required quality factors. For making
this judgement an inspector is supported by a set of questions
which are answered while following the instructions. Hence,
instructions and questions are framed together in a procedural
manner. Defining the content of a scenario in this manner is in
line with a more natural definition of “reading”, which is the
systematic examination of an artifact’s descriptions to gather
certain information for a particular purpose.

The success of the PBR technique relies on the ability of
software engineers not only to follow existing PBR scenarios
but to create new scenarios. This might be because of the need
to accommodate new stakeholders or new artifact types. In the
process of scenario creation, the first thing that needs to be
determined is what type of artifact is to form the unit of
inspection. This largely depends on the nature of the
underlying development method. In function-oriented
development methods, typical artifact types may be systems,
subsystems, components, modules, or functions. In object-
oriented development approaches typical artifact types are
classes, objects, and operations (i.e., methods) as well as
systems, subsystems and modules.

Once the inspected artifact has been determined, the next step
is to define the required scenarios. To do this the scenario

developer can follow the process explained below:

1. The first process step is to identify the types of descrip-
tions that contain pertinent information about a particular
artifact. This may be textual descriptions, such as textual
design documents, or graphical models. It may be possi-
ble to identify them with the help of a product or process
model since those define the descriptions that must be
created for each artifact as part of the development
method.

2. The second step is to specify the various stakeholders
that have a vested interest in the artifact under inspection.
As a starting point, the scenario developer may look at
stakeholders that have a particular role in the software
development process. These roles may be the producer of
a preceding description of the artifact (if existing), the
producer of a subsequent description of the artifact (if
existing), the tester, and the maintainer. The user of the
artifact as well as domain experts may be helpful as well.
Each of these represents a different (technical) perspec-
tive on the inspected artifact. If a description is not of
interest to any stakeholder, its value to the overall soft-
ware development process is questionable.

3. For each of the perspectives, a scenario developer identi-
fies what type of description and what kind of informa-
tion in the descriptions is most important for a particular
stakeholder (e.g., to perform his or her role in the soft-
ware development process), how to identify, and how to
extract this kind of information. For this, the scenario
developer may interview the different stakeholders.

4. Once this has been performed, the scenario developer
sets up the introduction part of the scenario by describing
the interests of a stakeholder. Then, he or she develops
instructions about how to identify and extract the
required information. The granularity should have
enough detail for an inspector to follow the given instruc-
tions step by step. Furthermore, it is important to some-
how make inspectors document the extracted information
(e.g., marking them with a coloured pen or writing parts
of the information down). This captures what informa-
tion an inspector has checked, for possible repetition at a
later stage.

5. The fifth and final step in defining a scenario is to set up
the questions an inspector is to answer based on the
extracted information and the understanding of the arti-
fact he or she has achieved. Characteristics of typical
problems in a particular environment, illustrated by flaw
distributions, are useful information for developing the
questions since they are often typical representatives of
problems in an environment. However, only those ques-
tions are to be included in a scenario that an inspector can
answer with the understanding he or she can achieve
based on the extracted information.

This process describes in a generic manner how to identify
perspectives and how to create an initial set of scenarios. The
crafted scenarios are generic in the sense that they can be
reused for the inspections of the same kind of artifact within
or even across projects. In practice, scenarios are rarely if ever
defined completely from scratch, but are typically adapted

499

from previous scenarios based on the experience gained from
applying them.

Armed with this enhanced version of PBR, including a
prescri.ptive process for setting up as well as executing the
reading process, we are now in a position to illustrate how PBR
can be applied to object-oriented development artifacts.

4 PERSPECTIVE-BASED READING IN OBJECT-
ORIENTED DEVELOPMENT

As mentioned in the previous section, in development
methods which allow an artifact to have multiple descriptions,
and vice versa, PBR is much more effective when the mapping
between the artifacts and descriptions is well defined. In other
words, for every artifact that might be the subject of an
inspection, it should be clear which descriptions (e.g., models,
documents) contain information about that artifact. Of the
leading object-oriented methods in widespread use, the one
which comes closest to meeting this goal is the Fusion method
[7]. Fusion is very precise about what specific models should
be created as part of an object-oriented development project,
and what information these models should contain. In
contrast, most other leading object-oriented methods are
vague about what models to produce and the extent of their
information content. As a consequence, when inspecting an
artifact it is not easy to ensure that all the information (i.e.,
models) describing properties of the artifact have been found
and checked. Fusion also has the advantage that it uses a mix
of textual and graphical models, and therefore reinforces the
idea that the descriptions used and identified for perspective-
based inspection can be of any kind. For these reasons, we use
Fusion as the basis of the example. However, in view of the
ubiquity and importance of the recently standardized Unified
Modelling Language (UML) [25] we use the UML notation
instead of Fusion’s own notation by adopting the substitution
strategy defined in [11. This does not affect the ideas conveyed
in the example. On the contrary, it should make them
accessible to a wider audience.

Point of Sale System
The example is part of a point of sale system which is
responsible for keeping track of the merchandise sold in a
store, and handling the purchase of this merchandise. The
main components of the system are the central control point,
from which managers observe and enter merchandise
information, the database, which stores the merchandise and
sales information, and the check-out control points, each of
which handles the sales from a particular check-out point. The
system also interacts with external objects, such as a credit
card validation database, to determine whether a credit card
is valid. In the example, we focus on part of the functionality
of a check-out controller component, specifically, the
operation which deals with the credit card validation
information obtained from a credit card database.

The Fusion method draws a strict boundary between the
analysis and design phases of a development project. In the
analysis phase, a system (or major subsystem, such as a check
out control point) is described in terms of two main models: a

class diagram (or object model as it is called in Fusion), and
an interface model. In this example, the class diagram
describes the different classes of relevance to the check out
control point and how they are related to each other. The
interface model is actually composed of two distinct
submodels: the life-cycle model and the operation model, both
of which are textual in nature. The life-cycle model identifies
the operations which the subsystem exports (and thus has to
implement) and describes acceptable execution sequences for
them. The operation model provides a detailed declarative
description of each of these operations in terms of
preconditions and postconditions. Each individual operation
description is termed an “operation schema” in Fusion. Figure
5 shows the operation schema for the operation
“validation-result” which is responsible for dealing with the
information provided by a credit card validation database in
response to a prior request for a card check. As shown in
Figure 5, a Fusion operation schema has seven so called
“clauses”. Apart from the name of the operation, which
appears in the first clause, called “Operation”, the two most
important clauses are the “Assumes” clause and the “Result”
clause. The first of these is a Boolean condition which states
what must be true for the operation to be guaranteed to execute
correctly, and the second is a Boolean condition which
describes what becomes true as a result of the operation
executing correctly. Both the preconditions (Assumes clause)
and the post condition (Result clause) are written in terms of
the entities modelled in the class diagram for the subsystem
being analysed. The relevant part of the class diagram is shown

Figure 5: Operation Schema

The purpose of the “Reads “, “Changes”, and “Sends” clauses
is to define the scope of the operation by summarizing certain
crucial pieces of information from the “Assumes” and
“Results” clauses. The “Reads” clause identifies the
information which the operation needs in order to do its job,
but does not change. Parameters preceded with the keyword
“supplied” are passed from the environment as input. The
“Changes” clause, on the other hand, identifies those items
which the operation may changes as it does its job. These are
the entities in the subsystem which record the effects of the
operation. The “Sends” clause lists the messages which the
subsystem sends to other entities in its environment when it is
performing the operation. The final clause, “Description”,
simply gives an informal description of the operation’s effects

500

and assumptions.

The operation schema in Figure 5 indicates that the purpose of
the validation-result operation is to complete a payment by a
credit card. The Reads clause indicates that the operation
requires three pieces of information to function, one called
valid of type Boolean, one called credit of type Integer, and the
third is the total attribute of the object Bill. The fact that these
parameters are both preceded by the keyword “supplied”
indicates that they are provided by the environment. The
Changes clause indicates that this operation has no effect on
the state of the system, while the sends clause indicates that the
operation causes the system to send four messages, invalid and
insuficient_Credit to the object display, open to the object till,
and completed-sale to the object database. An empty
Assumes clause, as in this case, actually corresponds to the
value True. This means that the operation has no precondition
and is therefore guaranteed to succeed under all
circumstances. Finally, the Result clause indicates the
conditions under which the operation sends the various
messages depending on the values of the items in the reads
clause.

The Fusion design phase requires a completely distinct set of
descriptions (i.e., models) to be created. Several of these have
been superseded with the advent of the UML, but the most
important type of design diagram in Fusion, the object
interaction diagram, has merely been renamed in the UML to
collaboration diagram. Fusion requires a separate
collaboration diagram to be created for each operation
identified in the analysis phase. The purpose of this diagram is
to describe how the effects of the operation are achieved
through the interaction of a group of objects. Figure 7 shows
a collaboration diagram for the validation-result operation
specified in Figure 5.

widl 1 tcm = se.mm mep.r

~1

D $bE.P

Figure 7: Collaboration Diagram

In a sense, a collaboration diagram of the form illustrated in
Figure 7 gives a partial, graphical description of the algorithm
used by the operation to fulfil its responsibilities. The notation
provided by the UML allows conditions and branches to be
described which determine the execution of the operation

according to the values of the input parameters or the state of
the system. However, because this algorithmic information is
only partial, Fusion recommends that it be supplemented with
a regular pseudocode description of the form illustrated in
Figure 8.

opomtzon POS-S@tam: wlidat~on-resell (valid : Boolean, credit : In&w)
if valid = LWJ then

get the fo~~lfrom the Bill
ifcrodit z- bill,toti thea

toll Llse databum inlorface to sand the kll to ti dakzbuse
1~11 the till inierfacs to open the till

else if credit = bill&M then
toll the intqfacs d&p&y lo dq2ay insuficied-credzl message

else
toll Br intarfacr displqv LO diqlqy ths card inmaIid message

Figure 8: Operation Pseudocode

Another important description in the Fusion method is the data
dictionary. This is not shown here, but it is essentially a table
containing textual descriptions of each artifact modelled in the
system.

Inspecting the Operation “Validation-Result”
The first task in setting up an inspection is to define precisely
which type of software artifact will be the subject of the
inspection. In this example, it is the “validation-result”
operation of the check out point subsystem. In other words, the
“artifact” in our example is the “validation-result” operation.
Of course, this is only one of the many operations of the point
of sale system, each of which should be inspected individually.

Once the type of the artifact has been determined, the process
described in the previous section can be used to define the
reading scenarios. According to this process, the first step is to
identify the relevant description types of the artifact. In our
case, these are the operation’s schema, the class diagram, the
operation’s collaboration diagram, the operation’s
pseudocode description, and the data dictionary.

The next step is to define the stakeholders that have an interest
in the quality of the artifact, and thus represent a perspective
from which to inspect it. Any person, or role, which is in some
way affected by the artifact’s quality, however remote, can
serve as the basis of an inspection perspective. In this example
we will consider the typical stakeholders used in perspective-
based inspection, which are defined in terms of the roles in the
development process. Hence, the stakeholders we consider are
requirements engineer, designer, and tester. This list is not
exhaustive, but serves to illustrate how the PBR approach
would function in an object-oriented project.

The next step is to identify which of the description types are
of relevance to the different perspectives. This information is
best captures in a table, as illustrated in Table 1.

1) Requirements 1 Designer 1 Tester 1 Maintainer)
Engineer

Ooeration Schema I d
I

14 IdI I
Class Diagram (/

Collaboration Diagram d (/
Operation Pseudocode (/ (/ (/

Data Dictionary (/

Table 1: Assignment of Perspectives to Descriptions

The final step is to define the actual scenarios, one for each
perspective. Obviously due to space limitations it is not

501

possible to show complete scenarios in their full generality,
since these typically run into several pages. Instead we aim to
illustrate the essence of what a scenario would look like.

Reading from the Perspective of a Requirements Engineer
The concern of the requirements engineer is to ensure that the
specification of the operation at the end of the analysis phase
is complete and error free. In particular this means that there
must be no inconsistencies between the various analysis
models that carry information relevant to the operation. The
requirements engineer’s scenario, therefore, describes the
activities that need to be performed, and the precise constraints
that must be checked, in order to be confident that no
inconsistencies exist. Figure 9 depicts the requirements
engineer scenario.

Assume you are inspecting an operation from the perspective of a requirements
engineer. The main concern of a requirements engineer is to ensure the
consistency of the various descriptions of the operation in the analysis models.
High quality therefore corresponds to few inconsistencies. The development
products which are of relevance are the operation’s schema, the class diagram
and the data dictionary. Follow the instructions below and answer the questions
carefully.
Locate the analysis class diagram, the data dictionary and the schema for the
operation under inspection. Identify the clauses and highlight them with a pen.
Carefully examine the clauses in the operation schema to ensure that they refer
only to concepts that appear in the class diagram or the data dictionary. Then
examine the clauses to ensure that the functionality of the operation is fully
defined and that there are no inconsistencies.
While following these instructions answer the following questions:
1. Is every class, attribute or association named in the operation schema

defined in the class diagram?
2. Is every type named in the operation schema defined in the data diction-

ary?
3. Are the initial conditions for starting up a function clear and correct?
1. Are the effects of a function specified under all possible circumstances? I

Figure 9: Scenario for Req. Engineer’s Perspective

The careful application of this scenario would reveal the
following inconsistency between the operation schema and
the class diagram. The operation schema uses an attribute of
Bill called total to determine when to send particular
messages, but in the class diagram, no such attribute exists.
Instead there is an attribute called sum. This inconsistency
would be revealed by the first question in the scenario, and
obviously would need to be corrected in one or other of the
descriptions.

Reading from the Perspective of a Designer
The task of the designer is to define how the required
behaviour specified in the operation schema is to be achieved
in terms of interactions between objects in the system. When
inspecting from the perspective of the designer, therefore, the
goal is to ensure that the various descriptions of this
interaction are consistent with one another. Figure 10 depicts
the designer’s scenario.

The careful application of the designer scenario would reveal
the following inconsistency between the operation schema
and the collaboration diagram for validation-result. The
schema indicates that under certain circumstances the
message open should be sent to the object till. However, no
such message appears in the collaboration diagram. In fact, till
has no incoming message at all. Instead a message called open
is sent to the object Bill at the exact point in the algorithm when
it should be sent to till. This is obviously a mistake in the

collaboration diagram that needs to be corrected.
Assume you are inspecting a system operation from the perspective of a a
designer. The main task of a designer is to describe how the operation meet its
responsibilities in terms of interactions between objects, High quality is
determined by correctness of the design with respect to the specification, and the
satisfaction of performance goals.
Locate the collaboration diagram, the pseudocode description and the schema
for theoperation. For each possible outcome of the postcondition, ensure that the
appropriate messages are dispatched between the appropriate objects to achieve
the desired goal. Mark the outcome as well as the message with a coloured pen.
Check that the outcomes and the messages described in the pseudocode and the
collaboration diagram are consistent.
While following these instructions answer the following questions:

1. For every message that is defined in the operation schema, is there a cor-
responding message sent in the collaboration diagram

2. For every attribute that is changed in the operation schema, is an appropri-
ate message sent to the corresponding object in the collaboration dia-
gram?

3. Are there any discrepancies between the algorithms defined in the collab-
oration diagram and the pseudocode description?

Figure 10: Scenario for Designer’s Perspective

Reading from the Perspective of a Tester
The concern of the tester is to ensure that the operation is
defined in a way that is testable. The basic idea, therefore, is
for the inspector to work through various test cases, and to
ensure that the descriptions of the operation are correct with
respect to these test cases. Traditional testing concepts are thus
highly applicable here, such as black box/white box testing,
equivalence class partitioning, etc. Figure 11 depicts the
tester’s scenario.

The careful application of the tester scenario would reveal the
following defect in the pseudo code description of the
operation. Analysis of the branch conditions in the inner “if’
statement indicates that certain allowed values of the input
value credit are not catered for in the branching structure,
namely, the situation where credit is less than the total attribute
of bill. While this is unfortunate for the customer concerned,
it is nevertheless a valid situation which must be catered for.
The algorithm must, therefore, be corrected.

I Assume you are inspecting an operation from the perspective of a tester. The
mam goal of a tester is to ensure the soundness of an ooeration. Hieh aualitv thus
corresponds to correctness and robustness. You will need to analysi te’st casks for
the operation, so if they are not available arrange for them to be created. A test
case consists of a set of input values plus a set of output values and/or state
changes expected for each combination of values. Follow the instructions below
and answer the questions carefully.
Locate the operation schema and the pseudo code description for the operation
under inspection. In the operation schema, identify the parameters which are
preceded by the “supplied” keyword. Identify the equivalence classes for these
parameters, and also the attributes named in the “reads” clause and document
them. Using these equivalence classes, identify the minimal set of test cases
needed to fully exercise the functional interface of the operation. In the
pseudocode description of the operation identify every conditional branch or
loop which represents an execution branch. Identify an additional set of test cases
which ensure that each branch would be executed.
While following the instructions answer the following questions
1. Do the branches in the pseudocode description match the condition out-

comes in the operation schema?
2. Are all possible sets of input values properly addressed by the operation

schema and the pseudocode description?
3. Are operations preconditions indicated?

Figure 11: Scenario for Tester’s Perspective

Reading from the Perspective of a Maintainer
The task of a maintainer is to ensure the maintainability of the
system. In practice this means that the complexity of the
operation’s design needs to kept to a minimum, and that it
should adhere to well established design principles formulated
to maximize maintainability. Figure 12 depicts the

502

maintainer’s scenario.
IAssume YOU are insaectine an ooeration from the oersoective of a maintainer.
The main goal of a’main&ner is to ensure that the collaboration diagram is
written in a way that can be easily changed and maintained. High quality,
therefore, means the conformance to specified design guidelines (low coupling,
high cohesion) and the minimization of complexity.
Locate the collaboration diagram and the pseudocode description for the
operation. Examine the diagram and the descriptions to identify points ot
converge from good design practice.
While following the instructions answer the following questions:
1. Are there any ways in which the number of objects, or the number of mes-

sages could be reduced?
2. Are there any cycles of messages in the collaboration diagram?
3. Is there any way in which the control structure of the operation could be

simplified?
4. Do the messages entering an object indicate the possibility of low cohe-

sion (are the messages totally unrelated)?
S. Is there a particularly high number of messages between a pair of objects?

Figure 12: Scenario for Maintainer’s Perspective

5 CONCLUSION
Inspections have become an indispensable tool in the quest for
higher quality software systems. However, even the more
advanced inspection techniques, such as perspective-based
inspection, have failed to fully make the transition from
traditional structured development methods to more modern
software approaches, such as object-oriented development.
These development methods consequently have a major
weakness in the area of systematic inspection.

In this paper, we have tackled this problem by first clearly
identifying and elaborating the reasons why existing
inspection methods, such as perspective-based inspection, are
currently not formulated in a way that enables them to be
scaled-up to meet the inspections needs of a wider range of
artifacts and methods, and then by defining a generalized
version of the PBR approach which addresses these problems.
Most of the ideas embodied in this new approach are not
limited to PBR, but should be of value to a wide range of
inspection techniques. The main motivation for this work,
however, was the support of more mature inspection
techniques in object-oriented development. To demonstrate
that the generalized PBR approach meets this goal, an
example was presented which illustrates how the approach
would be used in the context of a UML-based object-oriented
development project.

Researchers and practitioners may benefit from this work in
two ways. First, by providing a practical and concrete
definition of PBR, researchers have a solid base upon which to
perform quantitative investigations of the benefits of
perspective-based inspection in future. Second, practitioners
are provided with concrete advice on how to instantiate the
generalized version of PBR for the inspection of object-
oriented artifacts, especially in the early phases of
development. Considering the lack of quality assurance
techniques for object-oriented analysis and design
descriptions, we believe this paper makes a step in filling this
gap. Furthermore, practitioners can leverage their existing
inspection approaches with a systematic reading technique
even for artifacts developed according to conventional
structured development methods.

REFERENCES
[1] C. Atkinson. Adapting the Fusion Process to support the UML.

Object Magazine, 1997.

[Z] V.R. Basili. Evolving and Packaging Reading TechnoIogies.
Journal ofsystems and Software, 38(l), Julv 1997.

[3] V.R. Basili,. S. Green, 01 Laitenbergkr, Fr Lanubile, F. Shull,
S. Sorumgard, and M.V. Zelkowitz. The Empirical Investigation
of Perspective-based Reading. Journal of Empirical Software
Engineering, 2(1): 133-l 64, 1996.

[4] G. Booth. Object Oriented Analysis and Design with
Applications. Benjamin/Cummings, Redwood City, California,
2nd edition, 1994.

[5] L. Briand, K. El-Emam, T. FuBbroich, and 0. Laitenberger.
Using Simulation to Build Inspection Efficiency Benchmarks
for Development Projects. In Proceedings of the Twentieth
International Conference on Sofmare Engineering, pages 340-
349. IEEE Computer Society Press, 1998.

[6] B. Cheng and R. Jeffrey. Comparing Inspection Strategies for
Software Requirements Specifications. In Proceedings of the
1996 Australian Sofhvare Engineering Conference, pages 203-
21 1,1996.

[7] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist,
F. Hayes, and P. Jeremaes. Object-Oriented Development: The
Fusion Method. Prentice Hall, 1993.

[8] M. E. Fagan. Design and Code Inspections to Reduce Errors in
Program Development. IBM Systems Journal, I .5(3): 182-2 11,
1976.

[9] M. E. Fagan. Advances in Software Inspections. IEEE
Transactions on Software Engineering, 12(7):744-75 1, July
1986.

[IO] P. Fowler. In-process Inspections of Workproducts at AT&T.
AT&T Technical Journal, 65(2):102-l 12, mar 1986.

[l 11 T. Gilb and D. Graham. Sofhyare Inspection. Addison-Wesley
Publishing Company, 1993.

[12] M. E. Graden, P. S. Horsley, and T. C. Pingel. The Effects of
Software Inspections on a major Telecommunications-project.
AT&T Technical Journal, 65(3):32-40, May/June 1986.

[131 L. Hatton. Does 00 Sync with How We Think? IEEE Software,
15(3):4&54, May 1998.

[14] W. H. Humphrey. A Discipline for Sofhyare Engineering.
Addison-Wesley, 1995.

[151 Institute of Electrical and Electronics Engineers. Standard
Glossary of Sofnyare Engineering Terminolog.y, 1983.

[16] Institute of Electrical and Electronics Engineers. IEEE
Standards Collection - Software Engineering - I994 Edition,
1994.

[17] S.H. Kan, V.R. Basili, and L.N. Shapiro. Software quality: An
overview from the perspective of total quality management.
IBM Systems Journal, 33(l)+19, 1997.

[18] J. C. Knight and E. A. Myers. An Improved Inspection
Technique. Communications of the ACM, 36(11):51-61, 1993.

[19] 0. Laitenberger and J.-M. DeBaud. Perspective-based Reading
of Code Documents at Robert Bosch GmbH. Information and
Software Technology, 39:781-791, March 1997.

[20] J. A. McCall. Quality Factors. In John J. Marciniak, editor,
Encyclopedia of Sofhyare Engineering, volume 2, pages 958-
969. John Wiley and Sons, 1994.

[21] D. Parnas. Active Design Reviews: Principles and Practice.
Journal of Systems and Software, 7:259-265, 1987.

[22] A. A. Porter, H. Siy, A. Mockus, and L. G. Votta. Understanding
the Sources of Variation in Software Inspections. ACM
Transactions on Sofhyare Engineering and Methodology,
7(1):41-79, January 1998.

I231 A. A. Porter. L. G. Votta, and V. R. Basili. Comparing Detection - _
Methods for Software Requirements Inspections: A-Replicated
Exueriment. IEEE Transactions on Sofnvare Engineering,
21(6):563-575, June 1995.

[24] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen. Object-Oriented Modeling and Design. Prentice Hall,
1991.

[25] Rational Software Cooperation. Unified Modeling Language
Documentation Set, Version 1.1, September 1997.

503

