Software Design, Modelling and Analysis in UML

Lecture 09: Class Diagrams IV

2011-12-07

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lectures:
- Started to discuss “associations”, the general case.

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - Cont’d: Please explain this class diagram with associations.
 - When is a class diagram a good class diagram?
 - What are purposes of modelling guidelines? (Example?)
 - Discuss the style of this class diagram.

- Content:
 - Treat “the rest”.
 - Where do we put OCL constraints?
 - Modelling guidelines, in particular for class diagrams (following [Ambler, 2005])
Associations: The Rest
Recapitulation: Consider the following association:

\[\langle r : \langle \text{role}_1 : C_1, \mu_1, P_1, \xi_1, \nu_1, o_1 \rangle, \ldots, \langle \text{role}_n : C_n, \mu_n, P_n, \xi_n, \nu_n, o_n \rangle \rangle \]

- **Association name** \(r \) and **role names/types** \(\text{role}_i / C_i \) induce extended system states \(\lambda \).
- **Multiplicity** \(\mu \) is considered in OCL syntax.
- **Visibility** \(\xi / \text{Navigability} \) \(\nu \): well-typedness.

Now the rest:

- **Multiplicity** \(\mu \): we propose to view them as constraints.
- **Properties** \(P_i \): even more typing.
- **Ownership** \(o \): getting closer to pointers/references.
- **Diamonds**: exercise.
Visibility

Not so surprising: Visibility of role-names is treated completely similar to visibility of attributes, namely by **typing rules**.

Question: given

![Diagram](image)

is the following OCL expression well-typed or not (wrt. visibility):

\[
\text{context } C \ \text{inv} : self.role.x > 0 \quad \text{well-typed anyway} \\
\text{context } D \ \text{inv} : self.role_2.role.x > 0 \quad \text{not well-typed} \]
Visibility

Not so surprising: Visibility of role-names is treated completely similar to visibility of attributes, namely by **typing rules**.

Question: given

\[
\begin{array}{ccc}
C & \xrightarrow{1} & D \\
\xi \; role & & x : \text{Int}
\end{array}
\]

is the following OCL expression well-typed or not (wrt. visibility):

context \(C \) inv : self.role.x > 0

\[
x(\text{role}(\text{self}))
\]

Basically same rule as before: (analogously for other multiplicities)

\[
(Assoc_1) \quad \frac{A, D \vdash expr_1 : \tau_C}{A, D \vdash role(expr_1) : \tau_D}, \quad \mu = 0..1 \text{ or } \mu = 1,
\]

\[
\xi = +, \text{ or } \xi = - \text{ and } C = D
\]

\[
\langle r : \ldots \langle \text{role} : D, \mu, -, \xi, -, - \rangle, \ldots \langle \text{role}' : C, -, -, -, -, - \rangle, \ldots \rangle \in V
\]
Navigability

Navigability is similar to visibility: expressions over non-navigable association ends ($\nu = \times$) are basically type-correct, but forbidden.

Question: given

\[
\begin{array}{c}
C \\
x : Int
\end{array}
\quad \xrightarrow{0..1} \quad
\begin{array}{c}
\quad \quad
\end{array}
\quad
\begin{array}{c}
D
\end{array}
\]

is the following OCL expression well-typed or not (wrt. navigability):

context D inv : self.role.x > 0

\[\text{not well-typed}\]
Navigability is similar to visibility: expressions over non-navigable association ends \((\nu = \times)\) are **basically** type-correct, but **forbidden**.

Question: given

![Diagram of UML association with roles and navigability](image)

is the following OCL expression well-typed or not (wrt. navigability):

\[
\text{context } D \text{ inv : } \text{self.role.x > 0}
\]

The standard says:

- \('-\)’: navigation is possible
- \('\times\)’: navigation is not possible
- \('>\)’: navigation is efficient

So: In general, UML associations are different from pointers/references!

But: Pointers/references can faithfully be modelled by UML associations.
\\[CD \] makes no sense ...?

- in general there is no OCL expression involving \(x \) vs which is well-typed
- for requirements, we may disregard well-typedness and write instead \(C' \text{ inv: self.s.x > 0} \) (artificial example)

so, difference between \(_ \) and \('x' \) and \('>' \) and \('x' \)
is in well-typedness of exprs — what about \(_ \) and \('>' \)?

- in our formal, math. setting of UML models: there's no difference
- for the implementation: define what "effective" means and tell it to the programmers
Recapitulation: Consider the following association:

\[\langle r : \langle \text{role}_1 : C_1, \mu_1, P_1, \xi_1, \nu_1, o_1 \rangle, \ldots, \langle \text{role}_n : C_n, \mu_n, P_n, \xi_n, \nu_n, o_n \rangle \rangle \]

- **Association name** \(r \) and **role names/types** \(\text{role}_i/C_i \) induce extended system states \(\lambda \).
- **Multiplicity** \(\mu \) is considered in OCL syntax.
- **Visibility** \(\xi \) and **Navigability** \(\nu \): well-typedness.

Now the rest:

- **Multiplicity** \(\mu \): we propose to view them as constraints.
- **Properties** \(P_i \): even more typing.
- **Ownership** \(o \): getting closer to pointers/references.
- **Diamonds**: exercise.
Recall: The multiplicity of an association end is a term of the form:

\[\mu ::= * \mid N \mid N..M \mid N..* \mid \mu, \mu \quad (N, M \in \mathbb{N}) \]

Proposal: View multiplicities (except 0..1, 1) as additional invariants/constraints.

\[
\text{Context } C \text{ inv: } 4 \leq \text{size}(u) > 27 \text{ or size}(u) = 31
\]
Multiplicities as Constraints

Recall: The multiplicity of an association end is a term of the form:

$$\mu ::= * \mid N \mid N..M \mid N..* \mid \mu, \mu \quad (N, M \in \mathbb{N})$$

$$\mu ::= N..N \mid \mu, \mu \quad N, M \in \mathbb{N} \cup \{*, \}$$

Proposal: View multiplicities (except 0..1, 1) as additional invariants/constraints.

Recall: we can normalize each multiplicity $$\mu$$ to the form

$$N_1..N_2, \ldots, N_{2k-1}..N_{2k}$$

where $$N_i \leq N_{i+1}$$ for $$1 \leq i \leq 2k$$, $$N_1, \ldots, N_{2k-1} \in \mathbb{N}$$, $$N_{2k} \in \mathbb{N} \cup \{*, \}$$.

e.g. 31 to 31..31

Observe: e.g. * to 0..*
Multiplicities as Constraints

\[\mu = N_1 \ldots N_2, \ldots, N_{2k-1} \ldots N_{2k} \]

where \(N_i \leq N_{i+1} \) for \(1 \leq i \leq 2k \), \(N_1, \ldots, N_{2k-1} \in \mathbb{N}, \ N_{2k} \in \mathbb{N} \cup \{\ast\} \).

Define \(\mu^C_{OCL}(role) := \text{context } C \ inv : \)

\[(N_1 \leq \text{role} \rightarrow \text{size()} \leq N_2) \ 	ext{or} \ldots \ 	ext{or} \ (N_{2k-1} \leq \text{role} \rightarrow \text{size()} \leq N_{2k}) \]

omit if \(N_{2k} = \ast \)

for each \(\mu \neq 0..1, \mu \neq 1 \),

\(\langle r : \ldots, \langle \text{role} : D, \mu, \ldots \rangle, \ldots, \langle \text{role}' : C, \ldots \rangle, \ldots \rangle \in V \) or

\(\langle r : \ldots, \langle \text{role}' : C, \ldots \rangle, \ldots, \langle \text{role} : D, \mu, \ldots \rangle, \ldots \rangle \in V, \text{role} \neq \text{role}' \).

And define

\[\mu^C_{OCL}(\text{role}) := \text{context } C \ inv : \not\text{oclIsUndefined(\text{role})} \]

for each \(\mu = 1 \).

Note: in \(n \)-ary associations with \(n > 2 \), there is redundancy.
Recall/Later:

\[\mathcal{CD} = \{CD_1, \ldots, CD_n\} \]

signature \(\mathcal{S}(\mathcal{CD}) \)

invariants \(\text{Inv}(\mathcal{CD}) \)

From now on: \(\text{Inv}(\mathcal{CD}) = \{ \text{constraints occurring in notes} \} \cup \{ \mu^{\mathcal{C}}_{\text{OCL}}(\text{role}) \mid \)

\[\langle r : \ldots, \langle \text{role} : D, \mu, \ldots, \ldots \rangle, \ldots, \langle \text{role}' : C, \ldots, \ldots \rangle, \ldots \rangle \in V \text{ or } \]

\[\langle r : \ldots, \langle \text{role}' : C, \ldots, \ldots \rangle, \ldots, \langle \text{role} : D, \mu, \ldots, \ldots \rangle, \ldots \rangle \in V, \]

\[\text{role} \neq \text{role}', \mu \notin \{0..1\} \}. \]
Multiplicities as Constraints Example

OCL

\[\mu_{\text{OCL}}^C(\text{role}) = \text{context } C \text{ inv :} \]

\[(N_1 \leq \text{role} \rightarrow \text{size()} \leq N_2) \text{ or } \ldots \text{ or } (N_{2k-1} \leq \text{role} \rightarrow \text{size()} \leq N_{2k}) \]

\[
\begin{array}{c}
\text{CD :} \\
\begin{array}{c}
\text{role}_1 \\
\text{0..1} \\
\Rightarrow \\
\text{C} \\
v : \text{Int} \\
\Leftarrow \\
\text{role}_2 \\
4, 17 \\
\Leftarrow \\
\text{role}_3 \\
3..* \\
\end{array}
\end{array}
\]

Inv(CD) =

- \{\text{context } C \text{ inv : } 4 \leq \text{role}_2 \rightarrow \text{size()} \leq 4 \text{ or } 17 \leq \text{role}_2 \rightarrow \text{size()} \leq 17\} \\
 = \{\text{context } C \text{ inv : } \text{role}_2 \rightarrow \text{size()} = 4 \text{ or } \text{role}_2 \rightarrow \text{size()} = 17\}
- \cup \{\text{context } C \text{ inv : } 3 \leq \text{role}_3 \rightarrow \text{size()}\}
Why Multiplicities as Constraints?

More precise, can’t we just use types? (cf. Slide 26)

- $\mu = 0..1, \mu = 1$:
 many programming language have direct correspondences (the first corresponds to type pointer, the second to type reference) — therefore treated specially.

- $\mu = *$:
 could be represented by a set data-structure type without fixed bounds — no problem with our approach, we have $\mu_{OCL} = true$ anyway.

- $\mu = 0..3$:
 use array of size 4 — if model behaviour (or the implementation) adds 5th identity, we’ll get a runtime error, and thereby see that the constraint is violated. **Principally acceptable**, but: checks for array bounds everywhere...?

- $\mu = 5..7$:
 could be represented by an array of size 7 — but: few programming languages/data structure libraries allow lower bounds for arrays (other than 0). If we have 5 identities and the model behaviour removes one, this should be a violation of the constraints imposed by the model.
 The implementation which does this removal is **wrong**. How do we see this...?
Well, if the **target platform** is known and fixed, and the target platform has, for instance,
- reference types,
- range-checked arrays with positions 0, ..., \(N \),
- set types,

then we could simply **restrict** the syntax of multiplicities to

\[
\mu ::= 1 \mid 0..N \mid *
\]

and don’t think about constraints
(but use the obvious 1-to-1 mapping to types)...

In general, **unfortunately**, we don’t know.
We don’t want to cover association properties in detail, only some observations (assume binary associations):

<table>
<thead>
<tr>
<th>Property</th>
<th>Intuition</th>
<th>Semantical Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>unique</td>
<td>one object has at most one (r)-link to a single other object</td>
<td>current setting</td>
</tr>
<tr>
<td>bag</td>
<td>one object may have multiple (r)-links to a single other object</td>
<td>have (\lambda(r)) yield multi-sets</td>
</tr>
<tr>
<td>ordered, sequence</td>
<td>an (r)-link is a sequence of object identities (possibly including duplicates)</td>
<td>have (\lambda(r)) yield sequences</td>
</tr>
</tbody>
</table>

So not

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C}
\end{array}
\]

but

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C} \\
\text{D}
\end{array}
\]
We don’t want to cover association properties in detail, only some observations (assume binary associations):

<table>
<thead>
<tr>
<th>Property</th>
<th>Intuition</th>
<th>Semantical Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>unique</td>
<td>one object has at most one (r)-link to a single other object</td>
<td>current setting</td>
</tr>
<tr>
<td>bag</td>
<td>one object may have multiple (r)-links to a single other object</td>
<td>have (\lambda(r)) yield multi-sets</td>
</tr>
<tr>
<td>ordered, sequence</td>
<td>an (r)-link is a sequence of object identities (possibly including duplicates)</td>
<td>have (\lambda(r)) yield sequences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>OCL Typing of expression (\text{role}(expr))</th>
</tr>
</thead>
<tbody>
<tr>
<td>unique</td>
<td>(\tau_D \rightarrow \text{Set}(\tau_C))</td>
</tr>
<tr>
<td>bag</td>
<td>(\tau_D \rightarrow \text{Bag}(\tau_C))</td>
</tr>
<tr>
<td>ordered, sequence</td>
<td>(\tau_D \rightarrow \text{Seq}(\tau_C))</td>
</tr>
</tbody>
</table>

For **subsets**, **redefines**, **union**, etc. see [OMG, 2007a, 127].
Ownership

![Diagram of ownership concept]

Intuitively it says:

Association \(r \) is **not a “thing on its own”** (i.e. provided by \(\lambda \)),
but association end ‘\(role \)’ is **owned** by \(C \) (!).
(That is, it’s stored inside \(C \) object and provided by \(\sigma \)).

So: if multiplicity of \(role \) is 0..1 or 1, then the picture above is very close to
concepts of pointers/references.

Actually, ownership is seldom seen in UML diagrams. Again: if target platform
is clear, one may well live without (cf. [OMG, 2007b, 42] for more details).

Not clear to me:

![Diagram of not clear to me concept]
Back to the Main Track
Back to the main track:

Recall: on some earlier slides we said, the extension of the signature is **only** to study associations in “full beauty”. For the remainder of the course, we should look for something simpler...

Proposal:

- **from now on**, we only use associations of the form

 ![Diagram](image)

 (And we may omit the non-navigability and ownership symbols.)

- Form (i) introduces $\text{role} : C_{0,1}$, and form (ii) introduces $\text{role} : C_*$ in V.

- In both cases, $\text{role} \in \text{attr}(C')$.

- We drop λ and go back to our nice σ with $\sigma(u)(\text{role}) \subseteq \mathcal{P}(D)$.
OCL Constraints in (Class) Diagrams
Where Shall We Put OCL Constraints?

Numerous options:
(i) Additional documents.
(ii) Notes.
(iii) Particular dedicated places.

Notes:
A UML note is a picture of the form

`text`

`text` can principally be everything, in particular comments and constraints.

Sometimes, content is explicitly classified for clarity:
OCL in Notes: Conventions

stands for

context C inv : $expr$
(ii) **Particular dedicated places** in class diagrams:

\[
C \\
\xi \; v : \tau \{p_1, \ldots, p_n\} \{expr\} \\
\xi \; f(v_1 : \tau, \ldots, v_n : \tau_n) : \tau \{p_1, \ldots, p_n\} \{pre : expr_1 \quad post : expr_2\}
\]

For simplicity, we view the above as an abbreviation for

\[
C \\
\xi \; v : \tau \{p_1, \ldots, p_n\} \\
\text{context } f \quad \text{pre} : expr_1 \quad \text{post} : expr_2
\]
Invariants of a Class Diagram

- Let \mathcal{CD} be a class diagram.
- As we (now) are able to recognise OCL constraints when we see them, we can define

$$\text{Inv}(\mathcal{CD})$$

as the set $\{\varphi_1, \ldots, \varphi_n\}$ of OCL constraints occurring in notes in \mathcal{CD} — after unfolding all abbreviations (cf. next slides).

- As usual: $\text{Inv}(\mathcal{D}) := \bigcup_{\mathcal{CD} \in \mathcal{D}} \text{Inv}(\mathcal{CD})$.
- **Principally clear:** $\text{Inv}(\cdot)$ for any kind of diagram.
If \(\mathcal{CD} \) consists of only \(CD \) with the single class \(C \), then

- \(Inv(\mathcal{CD}) = Inv(CD) = \emptyset \)
Semantics of a Class Diagram

Definition. Let \mathcal{CD} be a set of class diagrams.

We say, the semantics of \mathcal{CD} is the signature it induces and the set of OCL constraints occurring in \mathcal{CD}, denoted

$$[[\mathcal{CD}]] := \langle \mathcal{I}(\mathcal{CD}), \text{Inv}(\mathcal{CD}) \rangle.$$

Given a structure \mathcal{D} of \mathcal{I} (and thus of \mathcal{CD}), the class diagrams describe the system states $\Sigma^\mathcal{D}$. Of those, some satisfy $\text{Inv}(\mathcal{CD})$ and some don’t.

We call a system state $\sigma \in \Sigma^\mathcal{D}$ consistent if and only if $\sigma \models \text{Inv}(\mathcal{CD})$.

In pictures:

\[
\mathcal{CD} = \{CD_1, \ldots, CD_n\} \\
\text{signature } \mathcal{I}(\mathcal{CD}) \\
\text{distinguish} \\
\text{basic} \\
\text{(classes and attributes)} \\
\text{induce} \\
(\sigma \in) \Sigma^\mathcal{D} \\
\text{invariants } \text{Inv}(\mathcal{CD}) \\
\text{extended} \\
\text{(visibility)}
\]
Pragmatics

Recall: a UML model is an image or pre-image of a software system.

A set of class diagrams \mathcal{CD} with invariants $\text{Inv}(\mathcal{CD})$ describes the structure of system states.

Together with the invariants it can be used to state:

- **Pre-image**: Dear programmer, please provide an implementation which uses only system states that satisfy $\text{Inv}(\mathcal{CD})$.

- **Post-image**: Dear user/maintainer, in the existing system, only system states which satisfy $\text{Inv}(\mathcal{CD})$ are used.

(The exact meaning of “use” will become clear when we study behaviour — intuitively: the system states that are reachable from the initial system state(s) by calling methods or firing transitions in state-machines.)

Example: highly abstract model of traffic lights controller.

```
<table>
<thead>
<tr>
<th>TLCtl</th>
</tr>
</thead>
<tbody>
<tr>
<td>red : Boolean</td>
</tr>
<tr>
<td>green : Boolean</td>
</tr>
</tbody>
</table>
```

$\text{not(red and green)}$
Constraints vs. Types

Find the 10 differences:

<table>
<thead>
<tr>
<th>C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x : \text{Int} {x = 3 \lor x > 17}$</td>
<td>$\mathcal{D}(T) = {3} \cup {n \in \mathbb{N} \mid n > 17}$</td>
</tr>
</tbody>
</table>

- $x = 4$ is well-typed in the left context, a system state satisfying $x = 4$ violates the constraints of the diagram.
- $x = 4$ is not even well-typed in the right context, there cannot be a system state with $\sigma(u)(x) = 4$ because $\sigma(u)(x)$ is supposed to be in $\mathcal{D}(T)$ (by definition of system state).

Rule-of-thumb:

- If something “feels like” a type (one criterion: has a natural correspondence in the application domain), then make it a type.
- If something is a requirement or restriction of an otherwise useful type, then make it a constraint.
References
References

