Contents & Goals

Last Lecture:
« Completed discussion of modelling structure.
Software Design, Modelling and Analysisin UML This Lecture: Modelling Behaviour
« Educational Objectives: Capabilities for following tasks/questions.

Lecture 83: Constructive Behaviour, State Machines Overview
10 « What's the difference between reflective and constructive descriptions of
behaviour?
* What's the purpose of a behavioural model?
2011-12-14 « What does this State Machine mean? What happens if | inject this event?
10 State Machine
« Can you please model the following behaviour

« Content:

» Purposes of Behavioural Models

« Constructive vs. Reflective
Albert-Ludwigs-Universitat Freiburg, Germany * UML Core State Machines (first half)

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

215

Stocktaking... Course Map e Constructive UML
1
Have: Means to model the structure of the system. "D——)L:‘ @ UML provides two visual formalisms for constructive description of behaviours:
w 3 LR
« Class diagrams graphically, concisely describe sets of system states. « Activity Diagrams
X R o cD, SM ¢ eocL ¢p, D s))
« OCL expressions logically state constraints/invariants on system states. *XJ/ @ (» State-Machine Diagrams
i} o 1
_ S v, s o ysp We (exemplary) focus on State-Machines because
Want: Means to model behaviour of the system. o3 7 . « somehow “practice proven” (in different flavours),
- . 2 3 S
+ Means to describe how system states evolve over time, AN ! HA ~ L « prevalent in embedded systems community,
f i ~~ 2, Ay, —sar) = N = 10, Az, —sp. Fs - .
that is, to describe sets of sequences [(E/.\’:{) = M - X’B (@sp,90, A7, =50, Fsp) « indicated useful by [Dobing and Parsons, 2006] survey, and
4 LR
o B et reol- e, R0 S i + Activity Diagram’s intuition changed (between UML 1.x and 2.x) from
il tino N A oy transition-system-like to petri-net-like..
of system states. (”“vfi? (one0) == . « Example state machine:
155
TG=WLE)

ok

: op : \E Eln#0/c:=a+Lin!F &)

A Fle:=0

UML State Machines: Overview

UML State Machines

4= sam

Er En#0/z:=x+1;n!F @
/n

Fla

Brief History:
« Rooted in Moore/Mealy machines, Transition Systems
o [Harel, 1987]: Statecharts as a concise notation,
introduces in particular hierarchical states.
Manifest in tool Statemate [Harel et al., 1990] (simulation, code-generation);
nowadays also in Matlab/Simulink, etc.

From UML 1.x on: State Machines
(not the official name, but understood: UML-Statecharts)

.

.

.

Late 1990's: tool Rhapsody with code-generation for state machines.

Note: there is a common core, but each dialect interprets some constructs
subtly different [Crane and Dingel, 2007]. (Would be too easy otherwise. ..)

12715

UML State Machines el an F b bjeld

Loabel ; “
/_\ = 2 n! % ALH
“;,Z‘,“ (s} E[n#0)/z:=2+Ln!F

Wuds daesibon

82

Brief History: <
= Rooted in Moore/Mealy machines, Transition Systems
« [Harel, 1987]: Statecharts as a concise notation,
introduces in particular hierarchical states.
Manifest in tool Statemate [Harel et al., 1990] (simulation, code-generation);
nowadays also in Matlab /Simulink, etc.

From UML 1.x on: State Machines
(not the official name, but understood: UML-Statecharts)

« Late 1990's: tool Rhapsody with code-generation for state machines.

Note: there is a common core, but each dialect interprets some constructs
subtly different [Crane and Dingel, 2007]. (Would be too easy otherwise. ..)

Roadmap: Chronologically

i) What do we (have to) cover?
UML State Machine Diagrams Syntax.

(ii) Def.: Signature with signals.

(ili) Def.: Core state machine.

(iv]

Map UML State Machine Diagrams
to core state machines.

Semantics:

The Basic Causality Model
Def.: Ether (aka. event pool)
Def.: System configuration.
Def.: Event.

Def.: Transformer.

Def.: Transition system, computation.

Transition relation induced by core state ma-
chine

Def.: step, run-to-completion step.

(xil) Later: Hierarchical state machines.

10775

13775

Roadmap: Chronologically

G
(it)
(iii)
(iv)

)

)
(vi)
(vi)
(viii)
(i)

e

(xi)
(i)

What do we (have to) cover?
UML State Machine Diagrams Syntax.

Def.: Signature with signals.

Def.: Core state machine.

Map UML State Machine Diagrams
to core state machines. J

S @avan N
Semantics: 3]
The Basic Causality Model

Def.: Ether (aka. event pool)

Def.: System configuration.
Def.: Event.

Def.: Transformer.
Def.: Transition system, computation.

Transition relation induced by core state ma-
chine.

Def.: step, run-to-completion step.

Later: Hierarchical state machines.

UML Sate Machines: Syntax

1155

14775

UML State-Machines: What do we have to cover?

Core Sate Machine

T SRR “t

[Eoarifaona
i

ot — Shald vof “‘“""&

be in & (olosict revavs it

Definition.
A core state machjfie over signature . = (7,%,V, atr,&) is a
tuple
M = (S, s9,—)

-empty, finite set of (basic) states,

L W
« 5o € Sfs an initial state, s
0 state, | s Ak Shete

G {_}) x Expr, x Acty xS
{}) x Boprsy
trigger guard action

is a labelled transition relation.

We assume a set Expr of boolean expressions over . (for in-
stance OCL, may be something else) and a set Act.» of actions.

17715

UML State-Machines: What do we have to cover?

[Starrle, 2005] [

R T eyt e

T e

g -

= Proven approach: R
Start out simple, consider the essence, namely S e

o basic/leaf states

D] e transitions,

then extend to cover the complicated rest.

Ratoneser Boartngaoma 7

S =
e e 5

From UML to Core State Machines; By Example

UML state machine diagram SM:

annot
(v

guard € Expr true, assumed/to be in Expr)
action € Acts : ship, ed to be in Act)

maps to

—_—t
M(SM) = ({s1,52}, s1 ,(s1, event, guard, action, s3))
s

S0 =

Sgnature With Sgnals

is a signature (as before).

Note: Thus conceptually, a signal is a class and cap’have attributes of plain

type and associations. M
Auuml"\ﬂ- (l»wJL‘- [Lcad) Mm' iy
(Y)Y =§{<C 40 € svaw-/é.é:,;

1675

Annotations and Defaults in the Sandard

Reconsider the syntax of transition annotations:
annot = [[(event)[* (event)]] ['[' (guard) "] [/ {(action)]]]

and let’s play a bit with the defaults: (() — et 7
. w (sqy =, Pue, stup, s2)
(m@lg set] / s (S —,’ Hrve, 4«;, sz)
B/ (s, &) e, Lip 153)
Jact ~ (S,—, e, €, 5:)
E[act ~ (54 €, e, akr 5:]
ELed/)ak ~ (s,Ere, ad, 5]

In the standard, the syntax is even more elaborate: (uwe daf 4ss Hoss)
« E(v) — when consuming E in object u, . EXLI0

attribute v of u is assigned the L
rev.
corresponding attribute of BEE we Ve & ae «

g
« E(v:7) — similar, but v is a local variable, €4t/
scope is the transition 7C7
o374

1977

rO:
I!u .

M= (L, 33,575,

Po[§ et 5'{«.w_aa>.<s.1»~,-x,qa>, -
(f,"ﬁ"‘“:‘il {x:u,']:}w‘l, n Cu?, 3 (s.-. -/ma,%‘,o,s;},
p ctams, E011]) (o161 <& oty
' se),

e(3)={EF) o

Wi/l

References

747

SHa [: j Flek ->@
E @/E/ % S@iﬁ@

o)

References

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs
thapsody statecharts: not all models are created equal. Software and Systems
Modeling, 6(4):415-435

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How UML is used.
Communications of the ACM, 49(5):109-114.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231-274.

[Harel, 1997] Harel, D. (1997). Some thoughts on statecharts, 13 years later. In
Grumberg, O., editor, CAV, volume 1254 of LNCS, pages 226-231. Springer-Verlag.

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. |EEE Computer, 30(7):31-42.

[Harel et al., 1990] Harel, D., Lachover, H., et al. (1990). Statemate: A working
environment for the development of complex reactive systems. IEEE Transactions

L on Software Engineering, 16(4):403-414

- [OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version

% 2.1.2. Technical Report formal /07-11-04.

" [OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02. 751

Sate-Machines belong to Classes

In the following, we assume that a UML models consists of a set ¢’ of class
diagrams and a set .2/ of state chart diagrams (each comprising one state
machines SM).

.

Furthermore, we assume each that each state machine SM € %4 is
associated with a class Csy € W(M),\e(g)

For simpl\'cfy, Wwe even assume a bijection, i.e. we assume that each class
C € ¢(S)has a state machine SMc and that its class Csa, is C.

If not explicitly given, then this one:
SMo = ({s0}, 50, (s0, , true, skip, 50))-

We'll see later that, semantically, this choice does no harm.

Intuition 1: SMc describes the behaviour of the instances of class C.
Intuition 2: Each instance of class C' executes SMc

i S o o Vae s ot

= Note: we don't consider multiple state machines per class.

= Because later (when we have AND-states) we'll see that this case can be viewed as
= a single state machine with as many AND-states.

20775

