Software Design, Modelling and Analysis in UML

Lecture 17: Reflective Description of Behaviour,
Live Sequence Charts I

2012-01-25

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:

- Constructive description of behaviour completed:
 - Remaining pseudo-states, such as shallow/deep history.

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What does this LSC mean?
 - Are this UML model’s state machines consistent with the interactions?
 - Please provide a UML model which is consistent with this LSC.
 - What is: activation, hot/cold condition, pre-chart, etc.?

- Content:
 - Brief: methods/behavioural features.
 - Reflective description of behaviour.
 - LSC concrete and abstract syntax.
 - LSC intuitive semantics.
 - Symbolic Büchi Automata (TBA) and its (accepted) language.
And What About Methods?
And What About Methods?

- In the current setting, the (local) state of objects is only modified by actions of transitions, which we abstract to transformers.

- In general, there are also **methods**.

- UML follows an approach to separate
 - the **interface declaration** from
 - the **implementation**.

 In C++ lingo: distinguish **declaration** and **definition** of method.

- In UML, the former is called **behavioural feature**

 and can (roughly) be

 - a **call interface** \(f(\tau_1, \ldots, \tau_{n_1}) : \tau_1 \)

 - a **signal name** \(E \)

Note: The signal list can be seen as redundant (can be looked up in the state machine) of the class. But: certainly useful for documentation (or sanity check).
Behavioural Features

Semantics:

- The **implementation** of a behavioural feature can be provided by:
 - An **operation**.

 In our setting, we simply assume a transformer like T_f.

 It is then, e.g. clear how to admit method calls as actions on transitions: function composition of transformers (clear but tedious: non-termination).

 In a setting with Java as action language: operation is a method body.
 - The class’ **state-machine** (“triggered operation”).
 - Calling F with n_2 parameters for a **stable** instance of C creates an auxiliary event F and dispatches it (bypassing the ether).
 - Transition actions may fill in the return value.
 - On completion of the RTC step, the call returns.
 - For a non-stable instance, the caller blocks until stability is reached again.
Behavioural Features: Visibility and Properties

\[
C
\]

\[
\begin{array}{l}
\xi_1 f(\tau_1,1, \ldots, \tau_1,n_1) : \tau_1, P_1 \\
\xi_2 F(\tau_2,1, \ldots, \tau_2,n_2) : \tau_2, P_2 \\
\langle \langle \text{signal} \rangle \rangle, E
\end{array}
\]

- **Visibility:**
 - Extend typing rules to sequences of actions such that a well-typed action sequence only calls visible methods.

- **Useful properties:**
 - *concurrency*
 - *concurrent* — is thread safe
 - *guarded* — some mechanism ensures/should ensure mutual exclusion
 - *sequential* — is not thread safe, users have to ensure mutual exclusion
 - *isQuery* — doesn’t modify the state space (thus thread safe)

- For simplicity, we leave the notion of steps untouched, we construct our semantics around state machines.
 Yet we could explain pre/post in OCL (if we wanted to).
You are here.
Course Map

Model

\[\mathcal{I} = (\mathcal{F}, \mathcal{E}, V, \text{attr}), \text{SM} \]

\[M = (\Sigma_{\mathcal{I}}, A_{\mathcal{I}}, \rightarrow_{\text{SM}}) \]

\[\pi = (\sigma_0, \varepsilon_0) \xrightarrow{(\text{cons}_0, \text{Snd}_0)} (\sigma_1, \varepsilon_1) \ldots \]

\[\varphi \in \text{OCL} \]

\[\phi \in \text{OCL} \]

Instances

\[G = (N, E, f) \]

Mathematics

\[B = (Q_{\text{SD}}, q_0, A_{\mathcal{I}}, \rightarrow_{\text{SD}}, F_{\text{SD}}) \]

\[w_\pi = ((\sigma_i, \text{cons}_i, \text{Snd}_i))_{i \in \mathbb{N}} \]

UML

\[CD, SM \]

\[\mathcal{F}, \mathcal{E}, V, \text{attr} \]

\[\Sigma_{\mathcal{I}}, A_{\mathcal{I}}, \rightarrow_{\text{SM}} \]

\[\sigma_0, \varepsilon_0 \]

\[\sigma_1, \varepsilon_1 \ldots \]

\[\text{cons}_0, \text{Snd}_0 \]
Motivation: Reflective, Dynamic Descriptions of Behaviour
What Can Be Purposes of Behavioural Models?

Example: Pre-Image
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

- **Require** Behaviour.
 “System definitely does this”
 “This sequence of inserting money and requesting and getting water must be possible.”
 (Otherwise the software for the vending machine is completely broken.)

- **Allow** Behaviour.
 “System does subset of this”
 “After inserting money and choosing a drink, the drink is dispensed (if in stock).”
 (If the implementation insists on taking the money first, that’s a fair choice.)

- **Forbid** Behaviour.
 “System never does this”
 “This sequence of getting both, a water and all money back, must not be possible.”
 (Otherwise the software is broken.)

Note: the latter two are trivially satisfied by doing nothing...
Constructive vs. Reflective Descriptions

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

- “A language is **constructive** if it contributes to the dynamic semantics of the model. That is, its constructs contain information needed in executing the model or in translating it into executable code.”

 A constructive description tells **how** things are computed (which can then be desired or undesired).

- “Other languages are **reflective** or **assertive**, and can be used by the system modeler to capture parts of the thinking that go into building the model – behavior included –, to derive and present views of the model, statically or during execution, or to set constraints on behavior in preparation for verification.”

 A reflective description tells **what** shall or shall not be computed.

Note: No sharp boundaries!
Constructive UML

UML provides two visual formalisms for constructive description of behaviours:

- **Activity Diagrams**
- **State-Machine Diagrams**

We (exemplary) focus on State-Machines because

- somehow “practice proven” (in different flavours),
- prevalent in embedded systems community,
- indicated useful by [Dobing and Parsons, 2006] survey, and
- Activity Diagram’s intuition changed from transition-system-like to petri-net-like...
Recall: What is a Requirement?

Recall:

- The semantics of the UML model $\mathcal{M} = (\mathcal{C}, \mathcal{M}, \mathcal{O})$ is the transition system (S, \rightarrow, S_0) constructed according to discard/dispacht/commence-rules.
- The computations of \mathcal{M}, denoted by $[\mathcal{M}]$, are the computations of (S, \rightarrow, S_0).

Now:

A reflective description tells what shall or shall not be computed.

More formally: a requirement ϑ is a property of computations, sth. which is either satisfied or not satisfied by a computation

$$\pi = (\sigma_0, \varepsilon_0) \xrightarrow{(cons_0, Snd_0)} (\sigma_1, \varepsilon_1) \xrightarrow{(cons_1, Snd_1)} \cdots \in [\mathcal{M}],$$

denoted $\pi \models \vartheta$ and $\pi \not\models \vartheta$.
OCL as Reflective Description of Certain Properties

- **invariants:**
 \[\forall \pi \in \mathcal{M} \forall i \in \mathbb{N} : \pi^i \models \vartheta, \]

- **non-reachability of configurations:**
 \[\not\exists \pi \in \mathcal{M} \not\exists i \in \mathbb{N} : \pi^i \models \vartheta \]
 \[\iff \forall \pi \in \mathcal{M} \forall i \in \mathbb{N} : \pi^i \not\models \vartheta \]

- **reachability of configurations:**
 \[\exists \pi \in \mathcal{M} \exists i \in \mathbb{N} : \pi^i \models \vartheta \]
 \[\iff \neg (\forall \pi \in \mathcal{M} \forall i \in \mathbb{N} : \pi^i \not\models \vartheta) \]

where
- \(\vartheta \) is an OCL expression or an object diagram and
- “\(\models \)” is the corresponding OCL satisfaction
 or the “is represented by object diagram” relation.
In General Not OCL: Temporal Properties

Dynamic (by example)

- **reactive behaviour**
 - “for each C instance, each reception of E is finally answered by F”
 \[
 \forall \pi \in [M] : \pi \models \vartheta
 \]

- **non-reachability** of system configuration **sequences**
 - “there mustn’t be a system run where C first receives E and then sends F”
 \[
 \nexists \pi \in [M] : \pi \models \vartheta
 \]

- **reachability** of system configuration **sequences**
 - “there must be a system run where C first receives E and then sends F”
 \[
 \exists \pi \in [M] : \pi \models \vartheta
 \]

But: what is “\models” and what is “ϑ”?
Interactions: Problem and Plan

In general: \(\forall (\exists) \pi \in \llbracket \mathcal{M} \rrbracket : \pi \models (\not \equiv) \vartheta \)

Problem: what is “\(\models \)” and what is “\(\vartheta \)”?

Plan:

1. Define the **language** \(\mathcal{L}(\mathcal{M}) \) of a **model** \(\mathcal{M} \) — basically its computations. Each computation \(\pi \in \llbracket \mathcal{M} \rrbracket \) corresponds to a **word** \(w_\pi \).
2. Define the **language** \(\mathcal{L}(\mathcal{I}) \) of an **interaction** \(\mathcal{I} \) — via Büchi automata.
3. Then (conceptually) \(\pi \models \vartheta \) if and only if \(w_\pi \in \mathcal{L}(\mathcal{I}) \).
Definition. Let $\mathcal{I} = (\mathcal{F}, \mathcal{C}, V, atr)$ be a signature and \mathcal{D} a structure of \mathcal{I}. A **word** over \mathcal{I} and \mathcal{D} is an infinite sequence

$$(\sigma_i, cons_i, Snd_i)_{i \in \mathbb{N}_0} \in \left(\sum_{\mathcal{D}} \times 2^{\mathcal{D}(\mathcal{C}) \times Evs(\mathcal{E}, \mathcal{D})} \times 2^{\mathcal{D}(\mathcal{C}) \times Evs(\mathcal{E}, \mathcal{D}) \times \mathbb{D}(\mathcal{C})} \right)^\omega.$$
The Language of a Model

Recall: A UML model $\mathcal{M} = (\mathcal{CD}, \mathcal{SM}, \mathcal{OD})$ and a structure \mathcal{D} denotes a set $[\mathcal{M}]$ of (initial and consecutive) **computations** of the form

$$(\sigma_0, \varepsilon_0) \xrightarrow{a_0} (\sigma_1, \varepsilon_1) \xrightarrow{a_1} (\sigma_2, \varepsilon_2) \xrightarrow{a_2} \ldots$$

where

$$a_i = (\text{cons}_i, \text{Snd}_i, u_i) \in 2^{\mathcal{D}(\mathcal{C}) \times \text{Evs}(\mathcal{E}, \mathcal{D})} \times 2^{\mathcal{D}(\mathcal{C}) \times \text{Evs}(\mathcal{E}, \mathcal{D}) \times \mathcal{D}(\mathcal{C}) \times \mathcal{D}(\mathcal{C})} =: \tilde{A}.$$

For the connection between models and interactions, we **disregard** the configuration of the ether and who made the step, and define as follows:

Definition. Let $\mathcal{M} = (\mathcal{CD}, \mathcal{SM}, \mathcal{OD})$ be a UML model and \mathcal{D} a structure. Then

$$\mathcal{L}(\mathcal{M}) := \left\{ (\sigma_i, \text{cons}_i, \text{Snd}_i)_{i \in \mathbb{N}_0} \in (\Sigma_{\mathcal{D}} \times \tilde{A})^\omega \mid \exists (\varepsilon_i, u_i)_{i \in \mathbb{N}_0} : (\sigma_0, \varepsilon_0) \xrightarrow{\text{cons}_0, \text{Snd}_0}_{u_0} (\sigma_1, \varepsilon_1) \ldots \in [\mathcal{M}] \right\}$$

is the **language** of \mathcal{M}.
Model Consistency wrt. Interaction

- We assume that the set of interactions \mathcal{I} is partitioned into two (possibly empty) sets of universal and existential interactions, i.e.

$$\mathcal{I} = \mathcal{I}_\forall \cup \mathcal{I}_\exists.$$

Definition. A model

$$\mathcal{M} = (\mathcal{CD}, \mathcal{SM}, \mathcal{OD}, \mathcal{I})$$

is called **consistent** (more precise: the constructive description of behaviour is consistent with the reflective one) if and only if

$$\forall \mathcal{I} \in \mathcal{I}_\forall : \mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathcal{I})$$

and

$$\forall \mathcal{I} \in \mathcal{I}_\exists : \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{I}) \neq \emptyset.$$
Interactions: Plan

- In the following, we consider **Sequence Diagrams** as interaction \(\mathcal{I} \),
- more precisely: **Live Sequence Charts** \cite{Damm and Harel, 2001}.
- We define the **language** \(\mathcal{L}(\mathcal{I}) \) of an LSC — via Büchi automata.
- Then (conceptually) \(\pi \models \vartheta \) if and only if \(w_\pi \in \mathcal{L}(\mathcal{I}) \).

Why LSC, relation LSCs/UML SDs, other kinds of interactions: *later.*

\[
\begin{align*}
\mathcal{P} &= (\mathcal{I}, \mathcal{C}, V, atr), \ SM \\
M &= (\Sigma_\mathcal{P}, A_\mathcal{P}, \rightarrow_{SM}) \\
\pi &= (\sigma_0, \varepsilon_0) \xrightarrow{(cons_0, Snd_0)} (\sigma_1, \varepsilon_1) \ldots X \\
G &= (N, E, f) \\
B &= (Q_{SD}, q_0, A_\mathcal{P}, \rightarrow_{SD}, F_{SD}) \\
\end{align*}
\]
Live Sequence Charts — Concrete Syntax
Example

LSC: L
AC: $actcond$
AM: invariant I: strict

Environment : LightsCtrl , CrossingCtrl , BarrierCtrl

secreq $\boxtimes t(10)$
lights_on \Rightarrow lights_ok
barrier_down \Rightarrow barrier_ok

$[1, 3]$ \Rightarrow done
$[1, 5]$ \Rightarrow MvUp

LightsCtrl : CrossingCtrl , BarrierCtrl
Building Blocks

- **Instance Lines:**

 - Environment
 - $: C$

- **Messages:** (asynchronous or synchronous/instantaneous)

 - a
 - b

- **Conditions and Local Invariants:** $(expr_1, expr_2, expr_3 \in Expr \mathcal{A})$
Intuitive Semantics: A Partial Order on Simclasses

(i) **Strictly After:**

![Diagram showing strictly after relationship]

(ii) **Simultaneously:** (simultaneous region)

![Diagram showing simultaneous region]

(iii) **Explicitly Unordered:** (co-region)

![Diagram showing explicitly unordered relationship]

Intuition: A computation path violates an LSC if the occurrence of some events doesn’t adhere to partial order obtained as the transitive closure of (i) to (iii).
Example: Partial Order Requirements

LSC: \(L \)
AC: \(actcond \)
AM: \(\text{invariant } I: \text{strict} \)

Environment : LightsCtrl : CrossingCtrl : BarrierCtrl

\[\neg M\text{vUp} \]

\[t(10) \]

\[\text{segreq} \]

\[\text{lights_on} \]

\[\text{barrier_down} \]

\[\text{lights_ok} \]

\[\text{barrier_ok} \]

\[\text{done} \]
With LSCs,

- whole charts,
- locations, and
- elements

have a mode — one of **hot** or **cold** (graphically indicated by outline).

<table>
<thead>
<tr>
<th>chart</th>
<th>location</th>
<th>message</th>
<th>condition/local inv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot:</td>
<td>solid outline</td>
<td>solid outline</td>
<td>p</td>
</tr>
<tr>
<td>cold:</td>
<td>dashed outline</td>
<td>dashed outline</td>
<td>p</td>
</tr>
</tbody>
</table>

- always vs. at least once
- must vs. may progress
- mustn’t vs. may get lost
- necessary vs. legal exit
Example: Modes

LSC: \(L \)
AC: actcond
AM: invariant I: strict

Environment

: LightsCtrl
 lights_on
 lights_ok
 done

: CrossingCtrl
 barrier_down
 barrier_ok
 done

: BarrierCtrl
 barrier_ok
 barrier_on
 done

secreq
\(\times t(10) \)
\(\times t \)
\(\neg MvUp \)
One major defect of MSCs and SDs: they don’t say when the scenario has to/may be observed.

LSC Specialty: Activation

LSCs: Activation condition (AC ∈ Expr), activation mode (AM ∈ \{init, inv\}), and pre-chart.

Intuition: (universal case)

- given a computation π, whenever expr holds in a configuration (σ_i, ε_i) of ξ
 - which is initial, i.e. k = 0, or (AM = initial)
 - whose k is not further restricted, (AM = invariant)
- and if the pre-chart is observed from k to k + n,
- then the main-chart has to follow from k + n + 1.
Example: What Is Required?

- **Whenever** the CrossingCtrl has consumed a ‘secreq’ event
- **then** it shall finally send ‘lights_on’ and ‘barrier_down’ to LightsCtrl and BarrierCtrl,
- if LightsCtrl is not ‘operational’ when receiving that event, the rest of this scenario doesn’t apply; maybe there’s another sequence diagram for that case.
- if LightsCtrl is operational when receiving that event, it shall reply with ‘lights_ok’ within 1–3 time units,
- the BarrierCtrl shall reply with ‘barrier_ok’ within 1–5 time units, during this time (dispatch time not included) it shall not be in state ‘MvUp’,
- ‘lights_ok’ and ‘barrier_ok’ may occur in any order.
- After having consumed both, CrossingCtrl replies with ‘done’ to the environment.
Live Sequence Charts — Abstract Syntax
Let $\Theta = \{\text{hot}, \text{cold}\}$. An **LSC body** is a tuple

$$(I, (L, \preceq), \sim, I, \text{Msg}, \text{Cond}, \text{LocInv})$$

where

- I is a finite set of **instance lines**,
- (L, \preceq) is a finite, non-empty, partially ordered set of **locations**, each $l \in L$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_l \in I$,
- $\sim \subseteq L \times L$ is an **equivalence relation** on locations, the **simultaneity** relation,
- $I = (T, E, V, atr)$ is a signature,
- $\text{Msg} \subseteq L \times E \times L$ is a set of **asynchronous messages** with $(l, b, l') \in \text{Msg}$ only if $l \not\sim l'$,
 Not: instantaneous messages — could be linked to method/operation calls.
- $\text{Cond} \subseteq (2^L \setminus \emptyset) \times Expr \times \Theta$ is a set of **conditions** with $(L, expr, \theta) \in \text{Cond}$ only if $l \sim l'$ for all $l, l' \in L$,
- $\text{LocInv} \subseteq L \times \{\circ, \bullet\} \times Expr \times \Theta \times L \times \{\circ, \bullet\}$ is a set of **local invariants**,
- Main. or pre-chat
Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

- For each location \(l \in \mathcal{L} \), if \(l \) is the location of
 - a condition, i.e.
 \[
 \exists (L, expr, \theta) \in \text{Cond} : l \in L,
 \]
 - a local invariant, i.e.
 \[
 \exists (l_1, i_1, expr, \theta, l_2, i_2) \in \text{LocInv} : l \in \{l_1, l_2\}, \text{ or}
 \]
 then there is a location \(l' \) equivalent to \(l \) which is the location of
 - a message, i.e.
 \[
 \exists (l_1, b, l_2) \in \text{Msg} : l \in \{l_1, l_2\}, \text{ or}
 \]
 - an instance head, i.e. \(l' \) is minimal wrt. \(\preceq \).

Note: if messages in a chart are cyclic, then there doesn’t exist a partial order
(so such charts don’t even have an abstract syntax).
\[I = (T, E, V, \text{at}, \text{SM}) \]

\[M = (\Sigma_I, A_I, \rightarrow_{SM}) \]

\[\pi = (\sigma_0, \varepsilon_0) \xrightarrow{(\text{cons}_0, \text{Snd}_0)} (\sigma_1, \varepsilon_1) \ldots \]

\[w_\pi = ((\sigma_i, \text{cons}_i, \text{Snd}_i))_{i \in \mathbb{N}} \]

\[G = (N, E, f) \]

\[\varphi \in \text{OCL} \]

\[CD, SM \]

\[CD, SD \]

\[\text{Model} \]

\[\text{Instances} \]

\[\mathbf{UML} \]
References
References

