Contents & Goals

Last Lecture:
- Live Sequence Charts Semantics

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - What’s the Liskov Substitution Principle?
 - What is late/early binding?
 - What is the subset, what the uplink semantics of inheritance?
 - What’s the effect of inheritance on LSCs, State Machines, System States?
 - What’s the idea of Meta-Modelling?

- Content:
 - Inheritance in UML: concrete syntax
 - Liskov Substitution Principle — desired semantics
 - Two approaches to obtain desired semantics
Inheritance: Syntax
Inheritance: Generalisation Relation

![Diagram of inheritance relation]

- **Alternative renderings:**
 - ![Alternative diagrams A and B]
 - ![Alternative diagrams C and D]

- **Read:**
 - \(C \) generalises \(D_1 \) and \(D_2 \); \(C \) is a **generalisation** of \(D_1 \) and \(D_2 \),
 - \(D_1 \) and \(D_2 \) specialise \(C \); \(D_1 \) **is a** (specialisation of) \(C \),
 - \(D_1 \) is a \(C \); \(D_2 \) is a \(C \).

- **Well-formedness rule:** No cycles in the generalisation relation.

Abstract Syntax

Recall: a signature (with signals) is a tuple \(\mathcal{S} = (\mathcal{T}, \mathcal{E}, V, atr) \).

Now (finally): extend to

\[
\mathcal{S} = (\mathcal{T}, \mathcal{E}, V, atr, F, mth, \lhd)
\]

where \(F/mth \) are methods, analogously to attributes and

\[
\lhd \subseteq (\mathcal{E} \times \mathcal{E}) \cup (\mathcal{E} \times \mathcal{E})
\]

is a **generalisation** relation such that \(C \lhd D \) for no \(C \in \mathcal{E} \) (“acyclic”).

\(C \lhd D \) reads as
- \(C \) is a generalisation of \(D \),
- \(D \) is a specialisation of \(C \),
- \(D \) inherits from \(C \),
- \(D \) is a sub-class of \(C \),
- \(C \) is a super-class of \(D \),
- \(\ldots \)
Mapping Concrete to Abstract Syntax by Example

Defn. Given classes \(C_0, C_1, D \in \mathcal{C} \), we say \(D \) inherits from \(C_0 \) via \(C_1 \) if and only if there are \(C_1^0, \ldots, C_n^0 \), \(C_1^1, \ldots, C_m^1 \in \mathcal{C} \) such that

\[
\begin{align*}
C_0 & \preceq C_1^0 \preceq \ldots \preceq C_n^0 \preceq C_1 \preceq C_1^1 \preceq \ldots \preceq C_m^1 \preceq D
\end{align*}
\]

We use \(\leq \) to denote the reflexive, transitive closure of \(\prec \).

In the following, we assume

- that all attribute (method) names are of the form \(C::v, \ C \in \mathcal{C} \cup \mathcal{B} \) \((C::f, \ C \in \mathcal{C}) \),
- that we have \(C::v \in \text{atr}(C) \) resp. \(C::f \in \text{mth}(C) \) if and only if \(v(f) \) appears in an attribute (method) compartment of \(C \) in a class diagram.

We still want to accept “context \(C \ inv: v < 0 \)”, which \(v \) is meant? Later!
References

