Software Design, Modelling and Analysis in UML

Lecture 18: Inheritance I

2012-02-01

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:
- Live Sequence Charts Semantics

This Lecture:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - What’s the Liskov Substitution Principle?
 - What is late/early binding?
 - What is the subset, what the uplink semantics of inheritance?
 - What’s the effect of inheritance on LSCs, State Machines, System States?
 - What’s the idea of Meta-Modelling?

- **Content:**
 - Inheritance in UML: concrete syntax
 - Liskov Substitution Principle — desired semantics
 - Two approaches to obtain desired semantics
Inheritance: Syntax
Inheritance: Generalisation Relation

- Alternative renderings:

- Read:
 - C generalises D_1 and D_2; C is a generalisation of D_1 and D_2,
 - D_1 and D_2 specialise C; D_1 is a (specialisation of) C,
 - D_1 is a C; D_2 is a C.

- Well-formedness rule: No cycles in the generalisation relation.
Abstract Syntax

Recall: a signature (with signals) is a tuple $\mathcal{S} = (\mathcal{T}, \mathcal{C}, V, atr)$.

Now (finally): extend to

$$\mathcal{S} = (\mathcal{T}, \mathcal{C}, V, atr, F, mth, \sqsubseteq)$$

where F/mth are methods, analogously to attributes and

$$\sqsubseteq \subseteq (\mathcal{C} \times \mathcal{C}) \cup (\mathcal{C} \times \mathcal{S}(\mathcal{C}))$$

is a **generalisation** relation such that $C \sqsubseteq^+ C$ for no $C \in \mathcal{C}$ ("acyclic").

$C \sqsubseteq D$ reads as

- C is a generalisation of D,
- D is a specialisation of C,
- D inherits from C,
- D is a sub-class of C,
- C is a super-class of D,
- ...
Mapping Concrete to Abstract Syntax by Example

$$\gamma = (\exists \lambda \in \mathcal{E},$$
$$\{ C_0, C_1, D, C_2 \},$$
$$\{ C_0 : x : \text{Int},$$
$$D : x : \text{Int} \},$$
$$\{ C_0 \vdash \sigma \times \chi, \quad D \vdash \sigma \times \chi, \quad C_1 \vdash \sigma \times \chi \},$$
$$\{ C_0 \triangleleft C_1, \quad C_1 \triangleleft C_2, \quad D \triangleleft C_2 \})$$

Note: we can have multiple inheritance.
Definition. Given classes $C_0, C_1, D \in \mathcal{C}$, we say D inherits from C_0 via C_1 if and only if there are $C_0^1, \ldots, C_0^n, C_1^1, \ldots, C_1^m \in \mathcal{C}$ such that

$$C_0 \triangleright C_0^1 \triangleright \ldots \triangleright C_0^n \triangleright C_1 \triangleright C_1^1 \triangleright \ldots \triangleright C_1^m \triangleright D.$$

We use ‘\preceq’ to denote the reflexive, transitive closure of ‘\triangleright’.

In the following, we assume

- that all attribute (method) names are of the form
 $$C::v, \quad C \in \mathcal{C} \cup \mathcal{E} \quad (C::f, \quad C \in \mathcal{C}),$$
- that we have $C::v \in atr(C)$ resp. $C::f \in mth(C)$ if and only if v (f) appears in an attribute (method) compartment of C in a class diagram.

We still want to accept “context C inv : $v < 0$”, which v is meant? Later!
References

