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Contents & Goals

Last Lecture:

Live Sequence Charts Semantics

This Lecture:
Educational Objectives: Capabilities for following tasks/questions.
What's the Liskov Substitution Principle?
What is late/early binding?
What is the subset, what the uplink semantics of inheritance?
What's the effect of inheritance on LSCs, State Machines, System States?

What's the idea of Meta-Modelling?

Content:
Inheritance in UML: concrete syntax
Liskov Substitution Principle — desired semantics

Two approaches to obtain desired semantics

— 19 — 2012-02-08 — Sprelim —

2/57



— 19 — 2012-02-08 — main

Inheritance Desired Ssmantics

Desired Semantics of Speaalisation: Suldyping
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There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object 01 of type S there is an object 0, of type T such that
for all programs P defined in terms of T,
the behavior of P is unchanged when o is substituted for oo
then S is a subtype of T."

S sb-type of T &> Vo €S Jo, e TYE « [1:D(0.) = [£1 G2
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Desired Semantics of Spedalisation: Suliyping
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There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object 01 of type S there is an object 05 of type T such that
for all programs P defined in terms of T,

the behavior of P is unchanged when o is substituted for o,
then S is a subtype of T."

In other words: [Fischer and Wehrheim, 2000]

“An instance of the sub-type shall be usable whenever an instance
of the supertype was expected,
without a client being able to tell the difference.”
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Desired Semantics of Speaalisation: Suldyping
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There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object 01 of type S there is an object 0, of type T such that
for all programs P defined in terms of T,
the behavior of P is unchanged when o is substituted for oo

then S is a subtype of T."

In other words: [Fischer and Wehrheim, 2000]
“An instance of the sub-type shall be usable whenever an instance

of the supertype was expected,
without a client being able to tell the difference.”

So, what's “usable”? Who's a “client”? And what's a “difference”?
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What Does [ Fischer andWehrheim, 2000 Mean for UML?
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“An instance of the sub-type shall be usable whenever an instance of the supertype
was expected, without a client being able to tell the difference.”

Wanted: sub-typing for UML.

With
It % B

we don't even have usability.
It would be nice, if the well-formedness rules and semantics of

would ensure_D; is a sub-type of C"
that D; objects can be used interchangeably by everyone who is using C's,

is not able to tell the difference (i.e. see unexpected behaviour).

“..shal beusable..” for UML

12/57
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Easy. Satic Typing

Given:

Wanted:

x > 0 also well-typed for Dy

'tS(Jl

Cl CZ
x: Int z: Int
f(Int) : Int f(Int) : Int
Dy D,
x : Bool
f(Float) : Int

/

927. CTT—)

¥ 20

€9 cmlexé D, iw:
%20

assignment itsC1 := itsD1 being well-typed (kof ofs cay M/

itsD1.x = 0, itsD1.£(0), itsD1 | F
being well-typed (and doing the right thing).

Approach:
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¢ &

a o

Simply define it as being well-typed,
adjust system state definition to do the right thing.

ViE O S well 4394} 2ﬁ V:T(v, t’fo:2‘31

d<*D,

Satic Typing Cont’d

C1
x: Int

(DY) : iy,

D,

£(G): Dy |

invariance,

covariance,

contravariance.

Cy

x: Int

f(Int) : Int

Do

x : Bool

f (Eloat) - Bes
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{(signal)) F

We could call, e.g. a method, sub-type preserving, if and only if it
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accepts more general types as input

provides a more specialised type as output

(contravariant),

(covariant).

This is a notion used by many programming languages — and easily type-checked.
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Excursus: Late Binding o Behavioural Features
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~ 19—

Late Binding

16/57

What transformer applies in what situation? (Early (compile time) binding.)

‘I";ft aﬁ linke

f not overridden in D

f overridden in D

C

s IO e B i
S e S () G IR
is  uSed > Ses 10 <t
(vo? ;:fi“g someC -> £() =0 C=:{0) v,: d
S'L I:L)etf someD > £() a: Jo D= L0 U0 O

cedly Vo) 2ame0> 50 ¢H) S/
—

What one could want is something different: (Late binding.)
e b bjed oo ¢ Q) vl
2 dd:&»:tu someD > £() =0 D:L) %:D

gl someC -> £() (1_9(() DufO U2: D
s wed
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Late Bindingin the Sandad andProgramming Lang
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In the standard, Section 11.3.10, “CallOperationAction”:

“Semantic Variation Points
The mechanism for determining the method to be invoked as a
result of a call operation is unspecified.” [OMG, 2007b, 247]

In C++,
methods are by default “(early) compile time binding”,
can be declared to be “late binding” by keyword “virtual”,

the declaration applies to all inheriting classes.

In Java,
methods are “late binding”;

there are patterns to imitate the effect of “early binding”

Exercise: What could have driven the designers of C+—+ to take that approach?

Note: late binding typically applies only to methods, not to attributes.
(But: getter/setter methods have been invented recently.)

18/57

Back to the Main Track “..tell thedifference.” for UML
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With Only Early Binding...
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...we're done (if we realise it correctly in the framework).

Then

if we're calling method f of an object w,

which is an instance of D with C{D

via a C-link, ¢+ {0 il be celied

then we (by definition) only see and change the C-part.

We cannot tell whether v is a C or an D instance.

So we immediately also have behavioural/dynamic subtyping.

- 19 - 2012-02-08 — Ssubtyping —

Difficult: Dynamic Suliyping C
f(Int) : Int
D
C::.f and D::f are type compatible,
but D is not necessarily a sub-type of C. fnt) : Int

Examples: (C++)

int C::f(int) {
return O;

Is

VS.

int D::f(int) {
return 1;

Is

20/57
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SubTyping Principles Cont’d

In the standard, Section 7.3.36, “Operation’:
“Semantic Variation Points
[-..] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

So, better: call a method sub-type preserving, if and only if it

(i) accepts more input values (contravariant),

(ii) on the old values, has fewer behaviour (covariant).
Note: Fhis (ii) is no longer a matter of simple type-checking!
And not necessarily the end of the story:

One could, e.g. want to consider execution time.

Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable
behaviour”, thus admitting the sub-type to do more work on inputs.

Note: “testing” differences depends on the granularity of the semantics.

Related: “has a weaker pre-condition,” (contravariant),
“has a stronger post-condition.” (covariant).

19 - 2012-02-08 — Ssubtyping —
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Ensuring SubTyping for State Machines

=

2

In the CASE tool we consider, multiple classes
in an inheritance hierarchy can have state machines.

ys
3

But the state machine of a sub-class cannot be drawn from scratch.

Instead, the state machine of a sub-class can only be obtained by
applying actions from a restricted set to a copy of the original one.

Roughly (cf. User Guide, p. 760, for details),

add things into (hierarchical) states,

e

N

—_—

add more states,

Re<t’),,

attach a transition to a different target (limited).

They ensure, that the sub-class is a behavioural sub-type of the super
class. (But method implementations can still destroy that property.)

Technically, the idea is that (by late binding) only the state machine of the most
specialised classes are running.

By knowledge of the framework, the (code for) state machines of super-classes is still

- 19 - 2012-02-08 — Ssubtyping —

accessible — but using it is hardly a good idea...
2357



Towards System States <&

— 19 — 2012-02-08 — Ssubtyping —

Vi —_—
Wanted: a formal representation of “if C' < D then D '‘is a' C", that is, | x4t

(i) D has the same attributes and behavioural features as C, and

(ii) D objects (identities) can replace C' objects.

We'll discuss two approaches to semantics:

Domain-inclusion Semantics (more theoretical)

A i‘g )ﬂu)

G ol §xgd —> Dlud )
A

(more technical)

Uplink Semantics oplooe ,(5(‘ z oD

Sowe D . x
’\/\/\ﬁ s Velink L. X

Meta-Modelling: | dea andExample
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Meta-Modelling: Why andWhat
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o Meta-Modelling is one major prerequisite for understanding
o the standard documents [OMG, 2007a, OMG, 2007b], and
o the MDA ideas of the OMG.

o The idea is simple:
 if a modelling language is about modelling things,
o and if UML models are and comprise things,
o then why not model those in a modelling language?

o In other words:
Why not have a model My such that
o the set of legal instances of My
is
o the set of well-formed (!) UML models.

Meta-Modelling: Example

— 19 - 2012-02-08 — Smm —

o For example, let's consider a class.

» A class has (on a superficial level)
e a name,
e any number of attributes,
o any number of behavioural features.

Each of the latter two has
e a name and

o a visibility. 1
Behavioural features in addition have
o a boolean attribute isQuery,
e any number of parameters,

e a return type.

o Can we model this (in UML, for a start)?

26/57




UML Meta-Model: Extract

NamedElement

name
visibility

RedefElement [ | redefdElem
*
Namespace
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£
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a
|
©
g Class
& 0.1
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I
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3
|
Classes [omg, 2007h 37
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3
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Figure 7.12 - Classes diagram of the Kernel package
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Operations [oma, 2007 31]

%)
[
8
I
I
=)
I3
|

BehavioralFeature
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{readOrly, union}|

JsStatic | Bonlean
A

{readOnly, union}
+ ffeaturingClassifier  + Mesture

Namespace

| MuitipliciyElement | TypedEfement

BehavioraiFeature

StructuralFeature
IsReadOnly : Boolean

0.4

[subsets namespace} {redefines ownedParameter}
o+ Operation + ownedParameter Parameter
Operation - "
isGuery | Boolean
. subsets ownedRLule
fsOrcered : Dooiean (s cprey (subsetz ounechuls)
JizUnicue : Boolean Constraint
Noweer © Irteger .11 0.1 * onstrair
dupper : UnlimitedMatural  [0.1]
{subsets context} {subsets ownedRule}
+ postCortext + postcondtion
0.1 *
{subsets context} {subsets ownedrule}
+ bodyContext + bodyCondition
0.1 0.1
+ type Typa
+ 0.1
N {redefines ralae%l?s}(gtﬁgg b
{subsets redefinedElement} :
+ redefinedOperation
B
Figure 7.11 - Operations diagram of the Kernel package
30/s7
Operations [omG, 2007h 30
N
aEnumerations

ParameterDirectionKind
in
inout
out
return

| | |
f i

Parameter

direction . ParameterDrectionkind
Hetaut : String
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ownediember,
ordered}

+ ownedParameter

+ ownerFormalParam
{subsets namespace}

Isubsets owner}
0.1 |+ owningParameter

Figure 7.10 - Features diagram of the Kernel package

{subsats ownedElement}

+ raisedException ﬁ
0.1 | defaultvalie
ValueSpec
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Clasgfiers [omg, 20071 29
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Generalization
isSubstitutable . Boolean

{readOrly, union} IsAbstract : Boolean

Name i fement Type
{sub=ets target} N
o + general
1
.

nContext
{suhsets source, {subsets
ek hd . suibsets owrer} ownedElement}
Telear: Bootean TreadOnly, union} s + generalization
+ [redefinecdElement 1 0

dreadOnly, subsats memnber)
+ fnheritedhember,

*

B
{subsets redefinedBlernent}
{readOnly, union, {subsets + redefinedClassifier

subsets feature}  redefinitionContext
Property I + iatiribute g +clsssiﬂer}
¥ 0.1 0

+ Jgenerdl [*

Figure 7.9 - Classifiers diagram of the Kernel package
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Namespaces [omMa, 2007h 26]
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A
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Figure 7.4 - Namespaces diagram of the Kernel package 3357



Root Diagram [om, 2007h 25]
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UML Architedure [, g
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Class, Object

. Infrastructure | |__________> Action, Filmstri
Meta-modelling has already (with semantics) > Package, Snapsht

been used for UML 1.x.

Superstructure || _________S Class, State,
For UML 2.0, the request (doaract i) > s o
for proposals (RFP) asked Fiow ..
for a separation of concerns:
Infrastructure and Superstructure B, Saich
S (concrete syntax) | | =--=------= > LassBox, Staiebox,
uperstructure. TransitionLine, ...

One reason:
sharing with MOF (see pagan || e > Node, Edge...
later) and, e.g., CWM.

Figure0-1 Overview of architecture

cwm
Profiles

36/57

UML Sugerstructure Packages [omg, 2007a 15
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Figure 7.5 - The top-level package structure of the UML 2.1.1 Superstructure
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Meta-Modelling: Principle
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3857
Modelling vs. Meta-Modelli ng
Class Property Type
Meta- name : Str name : Str name : Str
Model K -
(M2) ﬁ | f | f
\ ‘ | ’ I
\ \ | | |
S E S T R N BN (1)
o7 :Class 4‘[_) :Property 4]'_) :Type {C}, {’U},
name = C name = v name = Z {C — v}),
Model D s 32
(M1) f Pl
I
Instance : instance-of //
(Mo) | /€
| /
2C i= {u —
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Modelli ng vs. Meta-Modelli ng
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Class Property Type
Meta- name : Str name : Str name : Str
Model K -
(M2) T\ | T | f
| X | X |
\ " | ,' |
S S W S N S ot 8
7 :Class 4‘[_) :Property 4]'_) Type {C}, {U},
Model v name = C name = v name = Z {Cr—> ’U}),
odae 9
(M) ———— =
Instance So, if we have a meta model My of UML, then the set /7
(M0) of UML models is the set of instances of M. // c
A UML model M can be represented as an object
diagram (or system state) wrt. the meta-model My. |= {u—
) — O}}
Other view: An object diagram wrt. meta-model My
can (alternatively) be rendered as the UML model M.

3957

WAl -Formednessas Constraints in the Meta-Model

- 19 - 2012-02-08 — Sprinciple —

The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2] Generalization hierarchies must be directed and acyclical. A classifier
cannot be both a transitively general and transitively specific classifier

of the same classifier.

not self . allParents() > includes(self)” [OMG, 2007b, 53]

The other way round:

Given a UML model M, unfold it into an object diagram O wrt. M.

If Oy is a valid object diagram of My (i.e. satisfies all invariants from Inv(My)),
then M is a well-formed UML model.

That is, if we have an object diagram validity checker for of the meta-modelling
language, then we have a well-formedness checker for UML models.
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Reading the Sandad Cont’d
‘Window
public
size: Area = (100, 100)
defaultSize: Rectangle
protected
visibility: Boolean = true
XWin: XWindow
public
display)
hide()
private
attachX(xWin: XWindow)
Figure 7.29 - Class notation: attributes and operations grouped according to visibility
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)
A classifier is a dasification of insance, it desribes a seof instances that have features in common
Generalizations
- “Namespace(from Kernel)"on page 99
+ “RedefinableElement (froriternel)’ on page 130
+ “Type (fram Kernel)"on page 135
Description
A classfier is whoe Classifier is an abstract metaclass
A classifier is a type and can own geiizations,thereby makig it possible tadefine generalization relatiorigis to
othe clasifiers. A classfier can speify a ion hierarchy its i
A classifier is a relefinableelemet, meaing thatit is posible to reddine nesed dasifiers
Attributes
+ isAbstract: Boolean
If true, the Clasifier does noprovide acomplete and cappically An abstract
) classifier is intended toe used g.as the taget
0 relationships). Defaulivalue isfalse:
5
E Associations
& |+ ratribute: Property]
! Refers to albf the Properties thatre diect (ie..nat inherited or imported) attributesof the classifierSubses
- Classifier:featre andis a derved urion.
3
& |+ iteature : Feature [1]
) Spedfies each feaure defined in the céifier. membeFhis is a
S|+ general: Classifi]
5 Specifies the general Chifiersfor this Classfier. This is denved
|
o
2
I
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Reading the Sandad Cont'd

1

for his Classfier. These Generalizains navgate tomore gereral

the
Win ,
public ° o 1 ) N .
size: Area = Specifisall by from is
defaulize: R derived.
Visbity: Boold +  redefinedClassifier: Classifigf]
private the Clagiers by this Classifier
AWin: XWind
pﬂrﬁayo Package Dependencies
nde) +  substitution : Ststitution
o are owed by tis Classfier. SubsetsElement::ownedElemeand
Figure 7.29 - Cl
Package PowerTypes
738 Clas{ . powerypExtent: GeneralizationSet
A dasiior D ionSet of wiich the lassifier is
classifier is
Constraints
Generalizatiof
N [ The byhe
+ "Nameg] general = self.parents()
. "Re“e" 2 i be diected ical. Aclassfier cannot be both a trasitively general and
« “Type (i transtively specific clasifier of thesameclassifier
Description not self.allParents()->includes(self)
[3] A classfier mayonly speciaize classifiers of avalid type.
A classfier is e, i | selt. o
A classifier is | (4] The derivedby i inheritabe membersof the perents.
othe clasifier " inherit(sel. parents()->collect(p | p.
A classifier is
Package PowerTypes
Attributes [5] The Clasifier thatmaps to aGenealizationSemay neither be apscific nor a generaClassfier in any ofthe
. isAbstract c definedor that In other words.a pover type may notbe an irstance of
If true, itself nor may its instarces also be its sutasises.
‘ classif|
L relatior] Additional Operations
£ [1] ThequeryallFeature gives all ofthe features in the namespace of the clasifi general, through mechanissuchas
3 Associations inheritance, this will be a lager set than feate.
a + lattribute: Classifier::allFeatures(): Set(Feature);
| g‘"erﬂ allFeatures = member->select(oclisKindOf(Feature))
S 2SS (2] The qery parerts() gives al of theimmatiate ancestorsf ageneralized Classifier
& |+ [feature: Classifier::parents(): Set(Classifier);
i Spedfi parents = generalization.general
= |+ /generai:
& Specif
|
o
T 52 UML Superstructure Specification, v2.1.2 53
Readingthe Sandad Cont’d
g [3] The query al of thedirect ancesrs ofa ifier
. cl arents(): Set(Classifier);
Spechi allParents = self.parents()->union(self. parents()->collect(p | p.allParents())
clasfid (4] The qieryinheritaieMenbers(ygives all of the membersf aclassifierthat maybe irheried inone of its descendas,
qery. g
wind | Jinheritead subjectto whatever visiliity restictions appy.
public
Ul ean Specif c Classifier)
defaultsize: R| derive pre: c.allParents()->includes(self)
rotected = b g
P\abiiy. Bood +  redefinedd] = I ofm)
private Refere| [5] The giery hasVisibilityOf() determineswhetheranamel element is visiblén the chssfier. By default all are visibleit is
XWin: XWind only called wien the agumert is something owned by a pardn
0 Package Depe|  Classifier:hasVisibilityOf(n: NamedElement) : Boolean;
mﬂe‘() «  substitution| pre: self.allParents()->collect(c | c.member)->includes(n)
DX Refere] if (self.inheritedMember->includes(n)) then
Name: hasVisibilityOf = (n.visibility <> #private)
Figure 7.29 - CI else
Package Powg] hasVisibilityOf = true
738 Clas 6] Thequery corformsTo() gives tue for a chssifier that definea typethat conformso anotherThis isused, for example,
. query g ) P
Desig in the specfication of sgnatrre conformace for oferatbns.
A classifier is Classifier::conformsTo(other: Classifier): Boolean;
s , Constraints conformsTo = (self=other) or (self.allParents()->includes(other))
eneralizatiof [1] The gmeral [7) The query inrit() defineshow toinherit a set of eimens Herethe operatia is defhed toinherit trem all It is intended
- oNames oo to be redefined in afected
. ) c
Redefir 15 Genersiza
« “Type (ff transtively inherit = inhs
. not seff.allF] [8] The query raySpecialzeType() detrmines whetherthis classier may have a generalizatin relatonsh to chssifiers 6
Description |\ ciasstier|  {he speciffedype. By default a lassifienay specialize claifiers of the ame or amore gereral ype. It s itencéd to be
. trat fation congaints.
A classfier is selt parents|
A classifier is Classifier::maySpecialize Type(c : Classifier) : Boolean;
[4] Theinherit ma -
. ySpecializeType = self.oclisKindOf(c.ocIType)
other clasifier <elfinherite
A classifier is Semantics
Package Powd
Attibutes | (5] The Clagi] A C@iTer isa dasificaion of insance weording totheir featres
« isAbstract Generalza A Classifier may participate in generalizatirelationships with other Classifiers. Atstance ofa specificClassifier is
Wftrue|  itselfnarm{ aiso a (indirect) insance of each of the gnerd Classifiers. Therefore, featurs spedfied for instacesof the geerd
) classiff classifier ae implicitly specifed for instances of the specifitassifier Any canstraint applying to instances tfe
w0 relatior| Additional Op| general classifier also applies to instances of the specific classifier
5
S | associations| 2 TM4UeVd The specific seantics of how generalizion aflects each concrete subtypeGitssfier varies. All instances of a
I inherience] ¢|asifier have vakes corresponding to the classifieattributes.
J) + lattribute: Classifier::a|
| Referd  aireatures| A Classifier defies a type. ype between isdefined © that aClasifier conforms
i to itself and to all of its ancestin the gneralizationhierarchy
3 i 1 e qery on y
& |+ [feature: | Classifier:p]
2 Spedi parents = g
= |+ /genera:
& Specif
! 54 UML Superstructure Specification, v2.1.2
o
”“ 52 UML Superstructure Speciiicai

|
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thea

Package PowerTypes

[3] The query

Reading

The naion of power type was inspiréay the notion of powese. A power sé is ddined @& a ®t whoseinstacesare
Tl

Classifier: substs In esence, thena power type is a retat
Specii allParents 3§ & ifiewith a set of I a) have a ific CI b) represent a collection of subset|
Classf (4] The queryi| for that class.
Win
subjectto
bl *  linherited/ 1TV - S emantic Variation Points
size: Area = ( Specif Classifier:i
defaulize: R derive pre: callPal The precise lifecycle semantics afgegation is a seantic variation point.
visibility: Bood *  redefinedd inheritableM Notation
private Refere| [5] The qiery
:\:ﬂ: XWind only called| classifieris an abstract modelementand so properly speaid has no notation. It is nextheless conveniertb define
Pieplay0 Package Depe|  Classifier:H{ in one place a default ration available foany concrete submss of Classifir for which this notation is suitable. The
hide() . aubstiwtion  pre: seftai] default notation for a classifier is a solid-outiine rectangintaining the classifiername, and optiwally with
prvte ] Refere] if (selt| compartments separated by horizontal lines of ifier. The pedfic type of
auachXevin Name: h shown in the name. of Clagsér have tiir own disinct notations.
else
FloueT29-Cl  ckage Powd ol The name of an abstract Classifier is shown in italics
738 Clas{ . pouerywd [61 Thequerq Anatribute can be shown as a text string. The format ofsthisy is specified in the Notation sub clause of “Proper
Desig inthespec| (from Kernel, AssociationClasses)’ on pa2s
A classifier is Classifier:d
Constraints conformsTc Presentation Options
Generalizatiol
[1] The gmera| [7] The query| Any compartment may be spressed. A separator line is drawn for a suppressed compartment. If a jpanment is
+ “Nameg] general = s to be rede| suppressedho inference can bérawn about the presenoe absence of eleants in it. Compartment nam can be used
+ REASfl 1 Gonersiza  CRSSiers| 10 remove ambiguiyf necessary
+ Type(  wranstively inherit =inhl Ay abstract Classifier can be showsing the keyword {abstréicafter or below the name of the Classifier
not self.alip] [8] The query o o ) i
Description the specifi{ Thetype, visitiity, default, multiplicity property string may beuppressed from beig displayed, even if there avelues
[3] A clasifier,
redefinedb| in the model.
A classfier is selt parents
A classifier is | (4] Theinherit Classifier:n Tpe irividual properties of an attribute can be shaw columns rather thaas a continuas string.
othe clasifier seltmhonte maySpecial !
A classifier is Semantics | SW!e Guidelines
Package Pow + Atribute nares typically beghwith a lowercase letteMulti-word nanres are often forred by concatenating the word|
Attributes | (5] The Clasif] * @2=er S and usindowercas for all letters excegfor upcaing the firg letter ofeach word buthe first.
. isAbstract Generazal] A Classifier m|  + Centerthe name ofhe clasifier in boldface.
If true, itself nor My also an (indire + Center leyword (including stereotpe names) irplain face vithin guilemets above tclassifiername.
| classif aditional classifier ae i « For those langages thatii i lowercase nanes (ie, begh them
00 relatior] Additional Opf - general classi with anuppecas character).
<
3 Associations [ I‘r;:a?ll;?: The specific s| - Left justify attributes ad operations in plain face.
o classifier have] « Begin with letter
2 . /a“"g::zrs ;'Iis:a‘::'e: A Classifer d + Show full attributesind operationaihen needed arsppress hemin other contexts of references.
Classi to itself and tq
< [2] The qeery
& |+ /feawre: Classifier:p|
i Spedfi parents = gy
— |+ Jgeneral:
Q Speciff UML Superstructure Specification, v2.1.2 55
! 54
o L ’ d
T‘ 52 UML Superstructure Speciicaton, Va.1.2 ol
. Examples
Reading the s
[3] The query| The ndion of {
. Classifier::3 subets In esef ClassA
Speci allparents § a Classifiewitf [ name: Sting
for that cl shape: Rectangle
n classfi [4] The gueryi| o hat class. | | be: HEC )
. subjectto ) ||/ area: Integer {readonly}
publc /inheritedy Classifier-il Semantic Varil | neight meger=5
ize: Avea = Speci et I I
defaulSize: R derive pre: c.allPaf The precise lif
protected )
visibility: Bood *  redefinedd inheritableM Notation
private Refere| [5] The qery
i Xting only called| classifieris an| Classt
P ieplay0 Package Depe| Classifier:H in one place a] | id redefines name)
hide() «  substitution| pre: selfal| default notatio] | shape: Square
eight = 7
e ze'Efe if (self C”'“Fa"me"‘ls) Jwidth
ame
Figure 7.29 - C| else | e name of
Package Powg hal Figure 7.30 - Examples of attributes
7.38 Clas: 6] The Al i
. ) e o attribute ¢4 o - ributesn Figure7.30are explained below.
Desig in thespec| (from Kernel, ' € 0
A clasifier is Classifier-d « ClassA:naneis an attribte with type Sring.
Constraints conformsTo] Presentation « ClassA:bapeis an attibute with type Rectange.
Generalizatiol .
[1] The geera| [7) The query| Any compartmy ClassA: SIZE\S.E pul.‘n.c atml?ue of type Ineger wih mutiplicity 0..1.
- oNames oo tobe rede| suppressedio + ClassA:area ia derivedattibute with typelnteger. It is marked asead-anly.
+ REAef 1 Gonergiza  ClSSiers| 10 remove am + ClassAtheight is anatribute of type Integer with a defaulinitial value of 5.
< Type (] yanstively herit = p - opace | * ClassAwidih is anatribute f type Integer.
o not selfalip] (8] The query| + ClassBid is anatribute that redfines ClassAnane.
Deseription | o1 a ciassfier| e specifil Thetype, visiil . class: bapeis an atibute that tefines Cl pet ge.
A classifier is coltparents|  "e€finedb] i the model + ClassBheiglt is anatributethat redefine<ClassA: feigft. It hasa defait of 7 for ClassBinstanceshat overrideshe
Aclassifier is | (4] Theinherit Classifier:n The irgividual ClassA defali of 5.
other clasifier selfinherie maySpecial + ClassBuwidth isa derivedattibute tiat redefines ClassAudth, which is nat derived.
o ; Style Guidelin
A classifier is Semantics Y An attribute may also be shown using asiation notation, with no adornments at the taflthe arrow ashown in Figure
Package Powg « Attributd
Atributes | (5] The clasif| A 92=er 1S and usi
+ isAbstract: Generalzat] A Classifier m| + Centerth
If true, itselfnor m{ also a (indires - Center size
| classif - classifier ae il . Forthog | Window Area
w0 relatiorl Additional Op| general classi with an 1
5
£ [1] Thequeryg ; . Leftjust
S | associations Thequend The specifc 5 eftjus!
o classifier have] - Beginaf Figure 7.31 - Association-like notation for attribute
= + lattribute: Classifier::a|
a - Show fi
) Refer]  aiFeawres| A Classifier d ow T
Classi to itself and tq
£ asSl [2) The qery
& | fea‘s”'edif Classifier:p|
=3 pedfis _
& parents = g 56 UML Superstructure Specification, v2.1.2
— |+ /general: L |
I Specif| UML Superstructaie Speciicaton, V2 1.2 5]
| 54
o L z : 7
”“ 52 UML Superstructaie Speciicaion, V2 1.2 5]
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Reading

Win

public
size: Area = (
defautSize: R

visibility: Bool
private
XWin: XWind
public
display()
hide()
private
altachX(:Win]

Figure 7.29 - CI|
7.38 Clas:
A classifier is

Generalizatiol
- “Namesg]
+ “Redefi
+ “Type

Description

A clasdfier is

A classifier is
othe clasifier:
A classifier is

Attributes

+ isAbstract:
If true,
classif
relatior

Associations

«  [lattribute:
Refers
Classif

« [feature:
Spedi
« Jgeneral :
Specif|

52

Speci
classfi
+ /inheritedy
Specif
derive

+ redefinedq
Refere|

Package Depe]

«  substitution|
Refere|
Name«

Package Powg

+ powertyes]
Desigi

Constraints
[1] The gmeral
general = s
[2] Generdizat
transtively
not self.allP|
[3] A clasifier,
self. parentsf
[4] Theinherit
self.inherites

Package Powd]
[5] The Clasif
Generaizal
itself nor m{

Additional Op|
[1] Thequeryg
inheritance
Classifier::al
allFeatures
[2] The qeery
Classifier::p|
parents = gy

[3] The query
Classifier::
allParents

[4] The qeryi
subjectto
Classifier::i
pre: c.allPa)
inheritableM

[5] The query
only calle
Classifier::H
pre: self.all

if (self.
hi

else
ha

[6] Thequery
in the spe
Classifier::d]
conformsTc

[7] The query
to be redef
Classifier::i
inherit = inh|

[8] The query|
the specifi
redefinedb)
Classifier::n|
maySpeciall

Semantics

A clasifier is

A Classifier m|

also an (indire

classifier ae ir|
general classi

The specific s

classifier have]

A Classifier d

to itself and tq

Package PowerTypes
Examples For example, a Bank AccountyPe clasifier could have a poertype assoation with a GeneralizationSet. This
Package Powd GeneralizationSet could then associate with Genealizations whee the tass (i.e., geneteClassifier) Bank Account
has two specific subciaes(i.e., Classfiers): Cheking Account and Savings Account. Checkigeountand Savings
The naion of { Account, then, are instances of the power type: In other words, C and Savings
subsets In essf Class| Account areboth: instances bBank Account Jpe, as well as subdaes of Bank Account. (For moreptanationand
a Classifiewit] [name: sving | examples st Examplesn the GeeraliztionSet sb claise beow.)
for that class. | | shape: Rectan
Jarea: ineger | 7-3:9  Comment (from Kernel)
Semantic Vari] | height: Ineger
The precise li widih: Integer | A comment is a textual annotation thatnche attached to a set of elements.
Notation Generalizations
+ “Element(from Keme))" on page64.
Classifieris an| Class| ( " onpag
in one place a  [id (redefines na
default notatio| | shape: Square | DESCriPtiON
compartments ;‘E'%"f 7 A comment gives the ability tattach various remarks to elents. Acomnent carfes o semantic force,but may cotain
p| L s usail to a modeler
The name of A comment can be owned by any element
Figure 7.30 - E
o oome €4 The attibutes{ Atibutes
' . ClassA{ + multiplicitybody: String [0..1]
Presentation . ClassA Specifies a gring thatis thecomment
Any compartn] . g:ass: Associations
suppressedjo * ClassAT . annoatedElenent: Elemen(?]
to remove am + ClassA the
Anabstractcl|  * ClassA v
+ ClassB:i Constraints
Thetype, visib + ClassB:{ No additional constraints
in the model
+ ClassB:
The irdividual ClassA{ Semantics
X « ClassBY A comment adds no semantics to the annotated ehésy butmay represent inforation useful to the reader of the
Style Guidelin model
An attribute m:
« Attribute
and usi Notation
+ Centerty A Comnent is shown as a rectaeghith the upper right coer bat (this isalso known asa “note ymbol’). The
« Center rectange contains ta body of theComment. The connection teach anatated element ishown by a separate dashed|
- Forthos | Window | fine.
with an
. Leftjust Presentation Options
+ Beginal Figure7.31-A{ Thedasled line the note pp if it is clear frothe context, or not
. Showfd important in this diagram.
UML Superstructure Specification, v2.1.2 57
56
UML Superstructure Speciicaion, V212 5

54
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Open Questions...

Now you've been “tricked” again. Twice.
We didn't tell what the modelling language for meta-modelling is.

We didn't tell what the is-instance-of relation of this language is.

Idea: have a minimal object-oriented core comprising the notions of
class, association, inheritance, etc. with “self-explaining” semantics.

This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG, 2007a].
So: things on meta level

MO are object diagrams/system states

M1 are words of the language UML

M2 are words of the language MOF

M3 are words of the language . ..

— 19 — 2012-02-08 — Smof —

4457

MOF Semantics

One approach:
Treat it with our signature-based theory
This is (in effect) the right direction, but may require new (or extended)

signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

— 19 — 2012-02-08 — Smof —
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This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
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Other approach:

Define a generic, graph based "“is-instance-of” relation.

Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.
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This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

Other approach:

Define a generic, graph based "“is-instance-of” relation.

Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a semantics.
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One approach:

Treat it with our signature-based theory

This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

Other approach:

Define a generic, graph based "“is-instance-of” relation.

Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a semantics.

Most interesting: also do generic definition of behaviour within a closed
modelling setting, but this is clearly still research, e.g. [?]

4557
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Benefits; Overview

19 — 2012-02-08 — Sbenefits —

We'll (superficially) look at three aspects:
Benefits for Modelling Tools.
Benefits for Language Design.
Benefits for Code Generation and MDA.

Benefits for Modelli ng Todls

— 19 — 2012-02-08 — Sbenefits —

The meta-model My of UML immediately provides a data-structure
representation for the abstract syntax (~ for our signatures).

If we have code generation for UML models, e.g. into Java,
then we can immediately represent UML models in memory for Java.

(Because each MOF model is in particular a UML model.)

There exist tools and libraries called MOF-repositories, which can
generically represent instances of MOF instances (in particular UML
models).

And which can often generate specific code to manipulate instances of
MOF instances in terms of the MOF instance.

47 /57
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Benefits for Modelling Todls Cont’d

— 19 — 2012-02-08 — Sbenefits —

And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)
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And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)

Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.

49/57

49/57



Benefits for Modelling Todls Cont’d

19 — 2012-02-08 — Sbenefits —
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— XML Metadata Interchange (XMI)

Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.

Note: There are slight ambiguities in the XMI standard.

And different tools by different vendors often seem to lie at opposite ends on
the scale of interpretation. Which is surely a coincidence.

In some cases, it's possible to fix things with, e.g., XSLT scripts, but full
vendor independence is today not given.

Plus XMI compatibility doesn't necessarily refer to Diagram Interchange.
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And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)

Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.

Note: There are slight ambiguities in the XMI standard.

And different tools by different vendors often seem to lie at opposite ends on
the scale of interpretation. Which is surely a coincidence.

In some cases, it's possible to fix things with, e.g., XSLT scripts, but full
vendor independence is today not given.

Plus XMI compatibility doesn’t necessarily refer to Diagram Interchange.

To re-iterate: this is generic for all MOF-based modelling languages
such as UML, CWM, etc.
And also for Domain Specific Languages which don't even exit yet.
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Benefits for Language Design

Recall: we said that code-generators are possible “readers” of stereotypes.

For example, (heavily simplifying) we could
introduce the stereotypes Button, Toolbar, ...

for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

One mechanism to define DSLs (based on UML, and “within” UML): Profiles.
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Recall: we said that code-generators are possible “readers” of stereotypes.

For example, (heavily simplifying) we could
introduce the stereotypes Button, Toolbar, ...

for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

Et voila: we can model Gtk-GUIs and generate code for them.

Another view:
UML with these stereotypes is a new modelling language: Gtk-UML.
Which lives on the same meta-level as UML (M2).

It's a Domain Specific Modelling Language (DSL).
One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

50,57

Benefits for Languag Design Cont’d
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For each DSL defined by a Profile, we immediately have
in memory representations,
modelling tools,
file representations.

Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That's the first “reader” that understands these special stereotypes.
(And that’s what's meant in the standard when they're talking about giving
stereotypes semantics).

One can also impose additional well-formedness rules, for instance that
certain components shall all implement a certain interface (and thus have
certain methods available). (Cf. [Stahl and Vodlter, 2005].)

5157



Benefits for Languag Design Cont’d
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One step further:
Nobody hinders us to obtain a model of UML (written in MOF),

throw out parts unnecessary for our purposes,

add (= integrate into the existing hierarchy) more adequat new
constructs, for instance, contracts or something more close to
hardware as interrupt or sensor or driver,

and maybe also stereotypes.

— a new language standing next to UML, CWM, etc.

Drawback: the resulting language is not necessarily UML any more,
so we can’t use proven UML modelling tools.

But we can use all tools for MOF (or MOF-like things).
For instance, Eclipse EMF/GMF /GEF.

Benefits for Model (to Model) Transformation
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There are manifold applications for model-to-model transformations:

For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of

MOF.
The graph to be rewritten is the UML model
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Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the
inheritance relation and remove the stereotype.
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There are manifold applications for model-to-model transformations:

For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of
MOF.
The graph to be rewritten is the UML model

Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the
inheritance relation and remove the stereotype.

Similarly, one could have a GUI-UML model transformed into a
Gtk-UML model, or a Qt-UML model.

The former a PIM (Platform Independent Model), the latter a PSM
(Platform Specific Model) — cf. MDA.
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Sedal Case: Code Generation

Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.
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Speaal Case: Code Generation

Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

Note: Code generation needn’t be as expensive as buying a modelling
tool with full fledged code generation.

If we have the UML model (or the DSL model) given as an XML file,
code generation can be as simple as an XSLT script.

“Can be” in the sense of

“There may be situation where a graphical and abstract
representation of something is desired which has a clear and
direct mapping to some textual representation.”

In general, code generation can (in colloquial terms) become arbitrarily
difficult.
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Example: Model and XMl

(pt100)

gather (65C02)) update

SensorA

<?xml version = ’1.0’ encoding = ’UTF-8° 7>

1 ControllerA 1

(NET2270))
UsbA

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp = ’Mon Feb 02 18:23:12 CET 2009°’>

<XMI.content>

<UML:Model xmi.id = ’...’>
<UML:Namespace.ownedElement>
<UML:Class xmi.id = ’...’ name = ’SensorA’>

<UML:ModelElement.stereotype>
<UML:Stereotype name = ’pt100°’/>
</UML:ModelElement .stereotype>
</UML:Class>
<UML:Class xmi.id = ’...’ name = ’ControllerA’>
<UML:ModelElement.stereotype>
<UML:Stereotype name = ’65C02’°/>
</UML:ModelElement .stereotype>
</UML:Class>
<UML:Class xmi.id = ’...’ name = ’UsbA’>
<UML:ModelElement.stereotype>
<UML:Stereotype name = ’NET2270°/>

I
g </UML:ModelElement .stereotype>
% </UML:Class>
| <UML:Association xmi.id = ’...’ name = ’in’ >...</UML:Association>
S <UML:Association xmi.id = ’...’ name = ’out’ >...</UML:Association>
E </UML:Namespace . ownedElement>
= </UML:Model>
&
| </XMI.content>
2 </XMI>
|
I
g
|
3
I
S
&
3
&
|
2
|
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