Software Design, Modelling and Analysisin UML

Lecture 05: Class Diagrams|

2011-11-15

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

UML Class Diagrams: Stocktaking

Course Map

Fsp)

conss Snds
Lo, Sndo), (5 y) LeonenSndy),

UML Class Diagram Syntax [Oestereich, 2006]

watine o irlics s 7’6{ bas a bsé of

ISl Klassendiagramm Pz 2
naws «StereotypT, Stereotyp2»
v Paket::Klasse
de | lect of
attribut 441
S Abstrakte 2®16.tks
Klasse operation() < lés
StereotypT» < of
attribut = wert etbhod,
e be o,
wé Lo
r Attribute: orung= i 4‘««-
X Palet vdnung] = ntiahwert
Igenschafiswerte: {refwOnly}, {ordered), {composite} N"%’ bl W
‘Syntax fiir Operationdn: e valics « lkg
Sichtbarkeit *‘
Sichtbarkeit Parameteriiste: Richtung Name : Typ = Standardwert Fopt
+ public element Eigenschaftswerte: {query}
protected element Rowrg ot W
- private element e
~ package element

nama

Contents & Goals

Last Lecture:
« OCL Semantics
« Object Diagrams
This Lecture:
«+ Educational Objectives: Capabilities for following tasks/questions.
+ What is a class diagram?
o For what purposes are class diagrams useful?
« Could you please map this class diagram to a signature?

= Could you please map this signature to a class diagram?

« Content:
« Study UML syntax.
o Prepare (extend) definition of signature.
3 * Map class diagram to (extended) signature.

« Stereotypes — for documentation.

What Do We (Have to) Cover? m

A class

o has a set of stereotypes, [MEEULIGEIEIT]

Sterootyp1. Stereotyp2s

© has a name, Paket: Klasse

dorlll » belongs to a package,
© can be abstract,

attribut
operation()

Stereotyp1
attribut = wert

« can be active, o

prale has a set of operations, | S Atrbue

Eigenschaftwerte: {readOnly), (odered], [composie}

o has a set of attributes. ‘Syntax i Operationen:
. Parametelste: Richtung Name : Typ = Sandardvert
Each attribute has = publc element Eigenschaftswerte: {query)
#protected element Richtung: in, out, inout
 prvte clement

o a visibili
a visibility, - package element

* aname, a type,
Norfle a multiplicity, an order,

5 aninitial value, and

o 1Y
o a set of properties, such as readOnly, ordered, etc.

Wanted: places in the signature to represent the information from the picture.

éXM[L

Extended Signature

Lk e

ot esfract

zg r ~— 2,7, 050?“““*‘"

& i) /

o)

syl

E

Al

~cp <D, Tehomged, 0,7

A—<E, {s‘ﬂ.f!/@a)

Recall: Sgnature

& =(F,%.,V, atr) where
« (basic) types 7 and classes %, (both finite),
o typed attributes V, 7 from F or Gy or C,, C € €,

« atr : € — 2" mapping classes to attributes.

Too abstract to represent class diagram, e.g. no “place” to put class stereo-
types or attribute visibility

So: Extend definition for classes and attributes: Just as attributes already
have types, we will assume that

o classes have (among other things) stereotypes and
o attributes have (in addition to a type and other things) a visibility.

Extended Attributes

« From now on, we assume that each attribute v € V" has
(in addition to the type):

« a visibility

£ € {public, private, protected, package}
o

« an initial value expr, given as a word from language for initial
values, e.g. OCL expresions.

(If using Java as action language (later) Java expressions would be fine.)
= a finite (possibly empty) set of properties P,.

We define Py analogously to stereotypes
Asioiliky

Convention:

o We write (v : 7,&, expry, P,) € V when we want to refer to all aspects of v.

« Write only v : or v if details are irrelevant.
1040

Extended Classes

From now on, we assume that each class C' € € has:
= a finite (possibly empty) set S¢ of stereotypes,
» a boolean flag a € B indicating whether C is abstract,
= a boolean flag t € B indicating whether C' is active.

We use S¢ to denote the set (i Sc of stereotypes in ..
(Alternatively, we could add a set St as 5-th component to .7 to provides the stereo-
types (names of stereotypes) to choose from. But: too unimportant to care.)
Convention:
« We write
(C.Sc,a,t) €€

when we want to refer to all aspects of C.

« If the new aspects are irrelevant (for a given context),
we simply write C' € %’ i.e. old definitions are still valid.

And?

» Note:
All definitions we have up to now principally still apply as they are
stated in terms of, e.g., C' € ¥ — which still has a meaning with the
extended view.

For instance, system states and object diagrams remain mostly
unchanged.

The other way round: most of the newly added aspects don't con-
tribute to the constitution of system states or object diagrams.

 Then what are they useful for...?
« First of all, to represent class diagrams.

+ And then we'll see.

1140

Mapping UML CDsto Extended Sgnatures

From Class Diagrams to Extended Sgnatures

« We view a class diagram CD as a graph with nodes {ni,...,ny}
(each “class rectangle” is a node). ot cless boxer

< €(cD) = UY $m)] = §€0) [weTaa mund)
< V(CD) == UN, V()

o atr(CD) := UY., atr(n;)

o Ina UML model, we can have finitely many class diagrams,
€9 = {CDy,....CD;}.
which induce the following signature:
k k k
S (€D) = (9 ey, Jvien), m(cm)) .
i=1 =1 i=1

(Assuming .7 given. In “reality”, we can introduce types in class diagrams, the
class diagram then contributes to .7.)

12/40

15/40

From Class Boxes to Extended Sgnatures

A class box n induces an (extended) signature class as follows:
SERRK

V(n) = {(81 71,60, 00,1 APt Promth - (0 s 70,60 v0,6 {Pets o Pon 1)}
atr(n) = {C — {or,....v0}}

where
« "abstract” is determined by the font: o

true ,ifn=
an) =
false , otherwise

130
Is the Mapping a Function?
o Is #(€2) well-defined?
Two possible sources for problems:
(1) A class C' may appear in multiple class diagrams:
(i)
CDy CDy
c [
v Int w : Int
(ii)
CDy CDy
[>
3 v Int v : Bool
5 Simply forbid the case (i) — easy syntactical check on diagram.
160

What If Things Are Missing? c

v Int

« For instance, what about the box above?
+ v has no visibility, no initial value, and (strictly speaking) no properties.

It depends.
» What does the standard say? [OMG, 2007a, 121]
“Presentation Options.
The type, visibility, default, multiplicity, property string may be
suppressed from being displayed, even if there are values in the model.”

© Visibility: There is no “no visibility” — an attribute has a visibility in the
(extended) signature.
Some (and we) assume public as default, but conventions may vary.

o Initial value: some assume it given by domain (such as “leftmost value”,

but what is “leftmost” of Z7).
Some (and we)

« Properties: probably safe to assume 0 if not given at all.

1470

|s the Mapping a Function?

(2) An attribute v may appear in multiple classes:

C
v : Bool

Two approaches:

« Require unique attribute names.
This requirement can easily be established (implicitly, behind the scenes) by
viewing v as an abbreviation for

Cuv or Diw
depending on the context. (C::v : Bool and D::v : Int are unique.)
« Subtle, formalist’s approach: observe that
(v:Bool,...) and (v:Int,...)
are different things in V. But we don't follow that path. ..

1740

Class Diagram Semantics

What About The Rest?

« Classes:
« Active: not represented in o.

Later: relevant for behaviour, i.e., how system states evolve over time.

» Stereotypes: in a minute.

« Attributes:
= Initial value: not represented in o.
Later: provides an initial value as effect of “creation action”.
o Vis : not represented in o
Later: viewed as additional typing information for well-formedness
of system transformers; and with inheritance.

Properties: such as readOnly, ordered, composite
(Deprecated in the standard.)

« readOnly — later treated similar to visibility.

» ordered — too fine for our representation.

« composite — cf. lecture on associations.

18140

207450

Semantics

« The semantics of a set of class diagrams €2 first of all is the induced
(extended) signature . (€' 7).

« The signature gives rise to a set of system states given a structure 2.
« Do we need to redefine/extend 2?7 No.

(Would be different if we considered the definition of enumeration types in class
diagrams. Then the domain of an enumeration type 7, i.e. the set Z(7), would
be determined by the class diagram, and not free for choice.)

] e (175D
4 D(T)= fatke]

19/30

Sereotypes

21/a0

Semantics

The semantics of a set of class diagrams ¥ 2 first of all is the induced
(extended) signature ./ (€'2).

The signature gives rise to a set of system states given a structure 2.

Do we need to redefine/extend 27 No.

(Would be different if we considered the definition of enumeration types in class
diagrams. Then the domain of an enumeration type 7, i.e. the set Z(r), would
be determined by the class diagram, and not free for choice.)

What is the effect on $%7 Little. _ ule ojecks o#. vabados
For now, we only remove abs class instances, ie” ACSHrack
o D(C)» (V= (2(7)U2(%.))

is now only called system state if and only if, for all (C,S¢,1,t) € €,
)0 Svo il bty).D(C/
d nN2(C) =0. Wi o, (s
om (o) (©) " «‘r[
With @ = 0 as default “abstractness”, the earlier definitions apply directly.
We'll revisit this when discussing inheritance. 19
“0

Stereotypes as Labels or Tags

« So, aclass is
(C, Sc, a,t)

with a the abstractness flag, t activeness flag, and S¢ a set of stereotypes.

+ What are Stereotypes?
« Not represented in system states.

« Not contributing to typing rules.
(cf. later lecture on type theory for UML)

o [Oestereich, 2006]:
View stereotypes as (additional) “labelling” (“tags") or as “grouping”.

Useful for documentation and MDA

» Documentation: e.g. layers of an architecture.
Sometimes, packages (cf. the standard) are sufficient and “right”.

« Model Driven Architecture (MDA): later.

22/30

Example: Stereotypes for Documentation

 Example: Timing Diagram Viewer
[Schumann et al., 2008]
© Architecture of four layers:
o core, data layer
o abstract view layer
o toolkit-specific view layer/widget
« application using widget

o Stereotype “=" layer "=" colour
23740
Type Theory
Recall: In Jecture 03, we introduced OCL expressions with types, for instance:
expr : w iT ... logical variable w
| true | false : Bool ...constants
[O]=1]1]... :Int ... constants
| ezpry + expry, :Int x Int — Int ... operation
| size(expry) : Set(t) — Int

Wanted: A procedure to tell well-typed, such as (w : Bool) v

notw_—* Ba(— Boof
from not well-typed, such as, g

si7e(u.-). é

12 (2) = e

26/50

Sereotypes as | nheritance

« Another view (due to whom?): distinguish

« Technical Inheritance
If the target platform, such as the programming language for the implementation of
the blueprint, is object-oriented, assume a 1-on-1 relation between inheritance in the
model and on the target platform.
Conceptual Inheritance
Only meaningful with a common idea of what stereotypes stand for. For instance,
one could label each class with the team that is responsible for realising it. Or with
licensing information (e.g., LGPL and proprietary).
Or one could have labels understood by code generators (cf. lecture on MDSE)

» Confusing:
« Inheritance is often referred to as the “is a”-relation.
Sharing a stereotype also expresses “being something”.

« We can always (ab-)use
UML-inheritance for the
conceptual case, e.g.

2410
Type Theory
Recall: In lecture 03, we introduced OCL expressions with types, for instance:
expr = w iT ... logical variable w
| true | false : Bool ... constants
[0 =1]1|... :Int ... constants
| expry + expry : Int x Int — Int ... operation
| size(expry) : Set(r) — Int
Wanted: A procedure to tell well-typed, such as (w : Bool)
notw
from not well-typed, such as,
size(w).
“ Approach: Derivation System, that is, a finite set of derivation rules.
© We then say expr is well-typed if and only if we can derive
3 A CFexpr:T (read: “expression expr has type ")
2 for some OCL type 7, i.e. 7 € T U Tig U{Set(rg) | 7o € Tp UT¢}, C € C. 26
0

Excursus. Type Theory (cf. Thiemann, 2008)

A Type System for OCL

2540

2730

A Type System for OCL

We will give a finite set of type rules (a type system) of the form

“premise:

" ., “side condition”
‘conclusion’

("name”)

2840

References

[Oestereich, 2006] Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8.
Auflage. Oldenbourg, 8. edition.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

[Schumann et al., 2008] Schumann, M., Steinke, J., Deck, A., and Westphal, B.
(2008). Traceviewer technical documentation, version 1.0. Technical report, Carl
von Ossietzky Universitat Oldenburg und OFFIS

407450

A Type System for OCL

We will give a finite set of type rules (a type system) of the form

(“name”) , P vside condition”
‘conclusion’
These rules will establish well-typed (type sentences)
of three different “qualities”:
(i) Universal well-typedness:
Feapri
F1+2:Int
(ii) Well-typedness in a type environment A: (for logical variables)
AbFexpr:T
self = ¢ F self.v: Int
(iii) Well-typed in type envi A and context D: (for visibility)
A,DF expr:T

self <7, C Fself vz Int -

References

3940

