Contents & Goals

Last Lecture:

= Motivation: model-based development of things (houses, software) to cope
with complexity, detect errors early

Software Design, Modelling and Analysisin UML « Model-based (or -driven) Software Engineering Why (of all things) UML?

+ UML Mode of the Lecture: Blueprint.
Lecture 02: Semantical Model This Lecture:

+ Educational Objectives: Capabilities for these tasks/questions:
* Why is UML of the form it is?
o Shall one feel bad if not using all diagrams during software development?
« What is a signature, an object, a system state, etc.?
What's the purpose of signature, object, etc. in the course?

2011-10-26

= How do Basic Object System Signatures relate to UML class diagrams?

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal
« Content:
o Brief history of UML g

« Course map revisited

Albert-Ludwigs-Universitat Freiburg, Germany

= Basic Object System Signature, Structure, and System State °

22
Why (of all things) UML? A Brief History of UML A Brief Histg S
—_—] 3 | Kissep !
+ Boxes/lines and finite automata are used to visualise software for ages. « Boxes/lines 4 | KaeaD x4 % s ppges.
« Note: being a modelling languages doesn’t mean being graphical | ™ | H
(or: being a visual formalism [Harel]). « 1970’s, Software Crisis + 1970’s, Soft g
. . — Idea: learn from engineering disciplines to handle growing complexity. — Idea: lear slexity.
« For instance, [Kastens and Biining, 2008] also name: .
;) 1 Flowcharts, Nassi i Entity-Relation Diagrams Languages: < ims
« Sets, Relations, Functions v
« Terms and Algebras « Mid 1980’s: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990] « Mid 1980's: Y e P T vsien 1990]
« Propositional and Predicate Logic tem o) — e
+ Graphs « Early 1990's, advent of Object-Oriented-Analysis/Design/Programming » Early 1990’s| - O~ Verwendung ~ pmming
— Inflation of notati d methods, most inent: — Inflati H
+ XML Schema, Entity Relation Diagrams, UML Class Diagrams nilation of notations and methods, most prominen nhiation
= Object-Modeling Technique (OMT) [Rumbaugh et al., 1990] « Object ing Technique (OMT) | et al, 1090]

« Finite Automata, Petri Nets, UML State Machines

A meems e « Booch Method and Notation [Booch, 1993]
« Pro: visual formalisms are found appealing and easier to grasp. g e | [i
Yet they are not necessarily easier to write! Lrnais, N et ot o
© wwnce o = R

¢

.

Beware: you may meet people who dislike visual formalisms just for
being graphical — maybe because it is easier to “trick” people with a
meaningless picture than with a meaningless formula.

More serious: it's maybe easier to misunderstand a picture than a formula. e
e

4

A Brief History of UML

Boxes/lines and finite automata are used to visualise software for ages.

1970’s, Software Crisis™
— Idea: learn from engineering disciplines to handle growing complexity.

L ts, N

, Entity-Relation Diagrams
Mid 1980's: Statecharts [Harel, 1987], StateMate™ [Harel et al., 1990]
Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

+ Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]

* Booch Method and Notation [Booch, 1993]
* Object-Oriented Software Engineering (OOSE) [Jacobson et al., 1992]

Each “persuasion” selling books, tools, seminars. . .

Late 1990’s: joint effort UML 0.x, 1.x
Standards published by Object Management Group (OMG), “international,
open membership, not-for-profit computer industry consortium’.

Since 2005: UML 2.x

Course Map Revisited

8

UML Overview (ome, 2007b, 634)

The Plan

Class Diagram

State wachine
Diagram Dlagram

]

T
Use Case
olagram

[

component object
Diagram Giagram
1 [

Sructure

‘ Composie ‘
olagram

Deployment
olagram

packane ‘
Slagam

. Figure A.5 - The taxonomy of structure and behavior diagram

Recall:
« Overall aim: a formal language
for software blueprints.
« Approach:
(i) Common semantical domain
(i) UML fragments as syntax.

(i) Abstract representation of
diagrams

(iv) Informal semantics:
UML standard

(v) assign meaning to diagra

(vi) Define, eg., consistency.

Common Expectations on UML

Easily writeable, readable even by customers
Powerful enough to bridge the gap between idea and implementation

Means to tame complexity by separation of concerns (“views"

Unambiguous

h ble between

UML standard says how to develop software
Using UML leads to better software

We will see...

Seriously: After the course, you should have an own opinion on each of these claims.
In how far/in what sense does it hold? Why? Why not? How can it be achieved?

tools

Which ones are really only hopes and expectations? ... 7
UML: Semantic Areas
Activities State Machines Interactions

Inter-Object Behavior Base

Inra-Object Behavior Base

Structural Foundations.

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

[OMG, 2007b, 11]

10/

Basic Object System Sgnature

Basic Object System Sgnature Example

' = (7,%,V, atr) where
Definition. A (Basic) Object System Signature is a quadruple « (basic) types 7 and classes &, (both finite),
Common Semantical Domain I = (.6, V,atr) for aacl. clss De & « typed attributes V', 7 from 7 or Co or Cs, C € %,
IO m'_ﬁ 37’21 « atr : € — 2V mapping classes to attributes.
)) * Dy, r
+ 7 is a set of (basic) types, -~ [Dy] s pesclses ot dlhabues A
« € is a finite set of classes, * B Example: J / ‘Jvﬁ ade(®)=3a]
A
« Vis a finite set of typed attributes, i.e./each v € V has type S = ({Int},{C, D} {a : Int,p: Copon: C.},{C = {p.n}, D = {a}})
e TET or Cb) E
J N .
« Co,1 or C,, where C € € o Cod x% P of e -
itten v 7 or v : . har exaugl:
; A (written v : 7 or v : Coy or v : Cy), Cor ot} 5 dxyf
i &:"" o atr : € z+ 2", maps each class to its set of attributes. ERA
LN o gonesth & \/
& % Note: Inspired by OCL 2.0 standard [OMG, 2006], Annex A. &
. 11 D 12 1325
Basic Object System Signature Another Example Basic Object System Sructure Basic Object System Structure Example
= (7,%,V, atr) where Wanted: a structure for signature
+ (basic) types 7 and classes %, (both finite), (i, /2 BEete Qlie: Syiem i G 6 Fo = ({Int},{C. DY {w : Int.p: Con: Cu}.{C > {pon}, D s {2}})
o typed attributes V, 7 from Z or Cy; or C,, C € €, S =(F,%,V,atr)
« atr: € — 2V mapping classes to attributes. i i (et) et s (0 ol G Clamein, e Recall: by definition, seek a 2 which maps
Nt ot « 7€ 7 is mapped to Z(7), « 7€ 7 to some (),
Example: o class :, rzA « C €% is mapped to an infinite set B(C) of (object) identities. « ¢ €% to some identities 7(C) (infinite, disjoint for different classes),
athilsle K let., o Note: Object identities only have the operation; o C. and Cy; for C € € to 2(Co,1) = 2(C.) = 22,
Qo (§ by longl 3 o object identities of different classes are disjoint, i.e.
= s eo8 'ﬁiﬁf*‘w? YC,De€:C#D— 2(C)NZ(D)=0. 5
. w0 Gl _ v 10D, ., 33,200
; ' ¢ , « C. and Gy, for C € % are mapped to 27(7). o) = 2 (ol e b §
e N
e . We use 2(%) to denote g 2(C); analogously 2(%.). 2C) = N*xicj= f2e %,
Lo : 2(D) = IN' x 30} & 1,20.%, -}
S oM 2 Note: We identify objects and object identities, because both uniquely deter- 3 P Con) = 2(C.) = 22
b X " mine each other (cf. OCL 2.0 standard). : 20)
s *Q M 8 s 2 (Do) = 2(D.) 2°

Definition. Let X be afstrucfure of & £ (7.6, V. atr).
A system state of X wrf. 2 js a type-gonsistent mapping

0 DE) % (V= (A T)0D(%).
That is, for each u € 2(C), C € €, if u € dom(o)

+ dom(o(u)) = atr(C)
TV (D) D(E)
.(u(u))(u) cd(r)ifvinred
«(o(w)v) € 2(D.) if v: Doy orv: D, with D € €

We call u € (%) alive in o if and only if u € dom(o).

We use $%, to denote the set of all system states of .%" wrt.Z.
—

You Are Here.

System State Example

Signature, Structure: u{@j
g:
o = ({Int},{C, D}, {z : Int,p: Co,n: O}, {C — {p,n}, D — (1-)))

D(Int) =27, P(C)={lc,2¢,30,-}, P(D) = {10,203,)
DE) = foe, bp) ¢0,) = 2%
Wanted: o : 2(€) » (V = (2(7) U2(%.))) such that
« dom(a(u)) = atr(C),
o o(u)(v) € 2(r)ifv:T,TET,
« o(u)(v) € F(C.) if v: D, with D€ .

i ,0 O O ﬂ;j—ﬂ
o wippHd, wp tS1],
; B, ‘_,5,:915, x P 153 k!
sﬁg

1825

17/

Course Map

CD, SM p e 0oCL CD, SD

S = (.6, V.atr), SM espr #.5D
é@ A —sua) =M _

(cons1,$nds)

r (conso,Snda)
@50) L0 PR, (o, 84) T,

= (Qsp+ a0, Az, —sp, Fsp)

2172

System State Example

Signature, Structure:
o = ({Int},{C, D}, {z : Int,p: Co1,n: C.},{C — {p,n}, D — {2}})
D(Int) = Z, P(C)={1c,20,3¢,.}, (D) ={1p,2p,3p,...}

Wanted: ¢ : 2(€) » (V » (2(F) U 2(%.))) such that
o dom(o(u)) = atr(C),
o o(w)(v) € D(r) ifv:T,TE T,
o« o(u)(v) € Z(C.) if v: Dy with DEE .

« Concrete, explicit:

o ={lc {pr0,n {5c}}.5¢ - {pr> 0.n 0}, 1p — {z— 23}).

« Alternative: symbolic system state
o={ar {p=0n—{e}leam {prOn- 0},d— {2 23})

assuming ¢1,¢2 € 2(C), d € Z(D), c1 # ca.

References

1972

222

References

[Booch, 1993] Booch, G. (1993). Object-oriented Analysis and Design with Applications.
Prentice-Hall

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How UML is used. Communications
of the ACM, 49(5):109-114.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274.

[Harel et al., 1990] Harel, D., Lachover, H., et al. (1990). Statemate: A working environment for the
development of complex reactive systems. IEEE Transactions on Software Engineering,
16(4):403-414.

[Jacobson et al., 1992] Jacobson, I., Christerson, M., and Jonsson, P. (1992). Object-Oriented
Software Engineering - A Use Case Driven Approach. Addison-Wesley.

[Kastens and Biining, 2008] Kastens, U. and Biining, H. K. (2008). Modellierung, Grundlagen und
Formale Methoden. Carl Hanser Verlag Miinchen, 2nd edition.

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical Report
formal /06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical
Report formal /07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical
Report formal /07-11-02.

et al., 1990] J., Blaha, M., i, W., Eddy, F., and Lorensen, W.
(1990). Object-Oriented Modeling and Design. Prentice Hall
i 23

