— 12 - 2011-12-21 — main —

Sdtware Design, Modelling andAnalysisin UML

Ledure 12: Core Sate Machines ||
201112-21

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 12 - 2011-12-21 — Sprelim —

Last Lecture:
o The basic causality model

o Ether, System Configuration, Event, Transformer

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
o What does this State Machine mean? What happens if | inject this event?
o Can you please model the following behaviour.

o What is: Signal, Event, Ether, Transformer, Step, RTC.

e Content:
o Examples for transformer
o Run-to-completion Step
o Putting It All Together

2/43

— 12 - 2011-12-21 — main

Roadmap: Chrondogically

System Configuation, Ether, Transformer

3/43

—12 - 2011-12-21 — Sstmsem —

(i)

(i)
(iii)
(iv)

(v)
(vi)
(vii)
(viii)
(ix)

—~~
X %
~ ~—

(xii)

What do we (have to) cover?
UML State Machine Diagrams Syntax.

Def.: Signature with signals. m .

Def.: Core state machine. ‘ - w@

(AL

=X=-1 X
20 X=X a

Map UML State Machine Diagrams CD, SM I @€ O0CL CD, SD s
to core state machines. U : |
S =(T,€,V, atr), SM expr 7, 8D

Semantics: 0 I
The Basic Causality Model (52, Ay, —sie) = M ID B = (Qsprrd0, A, —sp, Fsp)
Def.: Ether (aka. event pool)] :
Def.: System configuration. (consy Sy (comsy Smdr)

(0, €0) 2 (o1, 61) e
Def.. Event.
Def.: Transformer. G=WNEf)
Def.: Transition system, computation. U oD
Transition relation induced by core state ma-
chine.
Def.: step, run-to-completion step.

Later: Hierarchical state machines. 403

Transformer AVl
W/

Fhe dé/ect& ‘\CW/"-?”% ackia,
/

7 3
Definition.
Let % the sef of system configurations over some .%, %, and
Eth and ether. [We cafl a relation
t C D(€) x (2 x Eth) x (£ x Eth)
a (system configuration) transformer.
o J

— 12 — 2010-12-08 — Sstmsem —

In the following, we assume that each application of a transformer ¢ to
some system configuration (o, &) for object u,, is associated with a set of
observations

Obst[uac](g, E) c 2@(‘5)><E’Us(é" U {*,+},@)X@(<€).
An observation (ug, (E,ci),udst) € Obsilug)(o,€)
represents the information that, as a “side effect” of u, executing t, an
event (!) (E,d) has been sent from object ug,. to object ugs;.

Special cases: creation/destruction. 0
/54

Why Transformers?

— 12 — 2010-12-08 — Sstmsem —

Recall the (simplified) syntax of transition annotations:
annot = [(event) [‘[(guard)]'] [‘/" (action)] |
Clear: (event) is from & of the corresponding signature.

But: What are (guard) and (action)?

UML can be viewed as being parameterized in expression language
(providing (guard)) and action language (providing (action)).

Examples:
Expression Language:
- OCL
- Java, C4++, ... expressions

Action Language:

- UML Action Semantics, “Executable UML"
- Java, C++, .. .statements (plus some event send action)

10/54

Transformers as Abstract Actions!

— 12 — 2010-12-08 — Sstmsem —

In the following, we assume that we're given

an expression language FExpr for guards, and F,M ﬁ«&é‘db’
an action language Act for actions, T may ust fiwod

o P epie Epy

and that we're given

a semantics for boolean expressions in form of a partial function

I[-1(-,)« Bapr — (82 x (gggh@(%))wlm

which evaluates expressions in a given system configuration,

Assuming I to be partial is a way to treat “undefined” during runtime. If I is not
defined (for instance because of dangling-reference navigation or division-by-zero), we

want to go to a designated “error” system configuration.

a transformer for each action: For each act € Act, we assume to have

tact € D(€) x (22 x Eth) x (% x Eth).

Expressorn/Action Languag Examples

— 12 — 2010-12-08 — Sstmsem —

We can make the assumptions from the previous slide because instances exist:

for OCL, we have the OCL semantics from Lecture 03. Simply remove the
pre-images which map to “1"”.

for Java, the operational semantics of the SWT lecture uniquely defines trans-
formers for sequences of Java statements.

We distinguish the following kinds of transformers:
skip: do nothing — recall: this is the default action

send: modifies € — interesting, because state machines are built around
sending/consuming events

create/destroy: modify domain of o — not specific to state machines, but
let's discuss them here as we're at it

update: modify own or other objects’ local state — boring

1154

12/54

e «follckrﬂ«a we AiScuss

Aa@, = § 3
veV
o wplete (e, v, ope) | ofoepe, € O]
vl sed (eg., &€ 204, | ekpts, expr, € O Eppat, ces@)f
U creake ((, o, v] | e € 0LESpr. C‘ff/vg‘l/f
U] olesty (o) | epe & QLS

Transformer Examples. Presentation

abstract syntax concrete syntax
op

intuitive semantics
well-typedness

semantics
((o,€), (0, €")) € toplug) iff ...
or
top[uz] (0, €) ={(0’, € Jjwhere . ..
observables
Obsgpluz](o,e) = {...}, not a relation, depends on choice

(error) conditions
Not defined if ...

2010-12-08 — Sstmsem —

12—

13/54

Transfor

mer: SKip

— 12 — 2010-12-08 — Sstmsem —

abstract syntax
skip ﬁ'/{?p

intuitive semantics

do nothing

well-typedness

.

semantics

t[ua](0,€) ={(0, e)f

observables

Obssxip|ug](o,) =0

(error) conditions

concrete syntax

Transformer: Updae

— 12 — 2010-12-08 — Sstmsem —

d
uus/t,

o{r Obsupdate(ezp'rl,'u,
o> ﬁ"{érror) conditions

abstract syntax concrete syntax
update(expry, v, exprs) Q)(ﬂf‘_v = @xrra
intuitive semantics
Update attribute v in the object denoted by expr; to the value
denoted by expr,.
well-typedness
expry : 7 and v : 7 € atr(C); expry : T;
expry, expry obey visibility and navigability

semantics daes ¢ CL"‘?’
tupdate(ezprl,v,empv“z) [Um]((L E) :‘20'7 €

where o’ = g[u — o(u)[v — I[ezpry] (o, B)]] with
a =T [expr](=

observables
capry) [Ua] = 0

Not defined if I[expr,](c,3) of I[exprs](o, B) not defined.

ot _“dl Al

& W

Leled hyhemy

1454

Wwee ué(.g

v,
as % bogf.
St o«

15/54

Updae

Transformer Example

SMe:

update(ezpry,v, exprsy)

tupdate(ezprl,v,eacpT2) [uz](av E) = (U[u e U(u) [’U I Iﬂeﬁpﬁ]](av B)”7 E)’
u = I[expr,](c,B)

— 12 — 2010-12-08 — Sstmsem —

/\—/'\/-)
. u : C u : C
o 1 oy it 1
r=4 £ [)_ S#‘ r=3
0 upet uls.e) = JP,_, 0
. y= (olv ol wm@lﬂ,i) y=
3 —_——
g / 3
< e X dhanges
. T > x11D (0, istf s v,3)<S
Transformer: Send
abstract syntax concrete syntax
send(E(expry, ..., €xpr,,), €TPT 45t) W Yot %7 E (_.)
intuitive semantics
Object u, : C sends event E to object expr g, i.e. create a fresh
signal instance, fill in its attributes, and place it in the ether.
well-typedness \EF) ‘:P)/
expr 1 Tp, C,D € 6 E € datr(E) ={v1 :71,...,0n : Tn };
expr; 17, 1 <1< m;
all expressions obey visibility and navigability in C'
semantics
v 1S tsend(E(ezprl yee 0, €TPT,), €TPT 44) [uw](ga 5) > (0/7 8/)

where o/ = o U{ur—{v;—d; | 1 <i<n}}; & =e® (udgst,w);
if wase = I[expr 5.](o, B) € dom(o); d; = I[expr;] (o, 3) for
1<1<n;
u € P(F) a fresh identity, i.e. u ¢ dom(o),

and where (0’,¢’) = (0,¢) if ugst & dom(o); 5 = {5?{% — uw}l 3:(

observables
Obssena|tiz] = {(ts, (E,d1, ..., dn), udst)}
(error) conditions
I[expr](c, 3) not defined for any
expr € {expr 4o, €TPT1, ..., €TPT, }

Wlo

16/54

1754

Send Transformer Example

— 12 — 2010-12-08 — Sstmsem —

SMe:

n
@ /. BRI F(z+1);... @

send(E(expry, ..., expr,,), €TPT 45;)

tsend(ezp'r_m,E(ezprl ,,,,, expr,,),expr g,) [U‘z] (Uv E) =

o Zl_i EM su(f(wtlk”)*g)[u}
& HE

£ @ (w.f)

m
Er;

18/54

Transformer: Create

— 12 — 2010-12-08 — Sstmsem —

abstract syntax concrete syntax
create(C, expr, v) -V = MR (C‘)
intuitive semantics
Create an object of class C' and assign it to attribute v of the object
denoted by expression expr.

well-typedness
expr : 7p, v € atr(D), atr(C) = {{vy : 71, expr?) | 1 < i < n}
semantics

observables

(error) conditions

I[expr](o, B) not defined.

We use an “and assign”-action for simplicity — it doesn’t add or remove
expressive power, but moving creation to the expression language raises all
kinds of other problems such as order of evaluation (and thus creation).
Also for simplicity: no parameters to construction (~ parameters of construc-
tor). Adding them is straightforward (but somewhat tedious).

19/54

Create Transformer Example

— 12 — 2010-12-08 — Sstmsem —

SMe:
..;n:=mnew C;...
R ()
create(C, expr, v)
tcreate(C,ezpr,v) (078) = -
g d:D

20754

How To Choaose New | dentiti es?

— 12 — 2010-12-08 — Sstmsem —

Re-use: choose any identity that is not alive now, i.e. not in dom(o).

Doesn't depend on history.
May “undangle” dangling references — may happen on some platforms.

Fresh: choose any identity that has not been alive ever, i.e. not in
dom(c) and any predecessor in current run.

Depends on history.
Dangling references remain dangling — could mask “dirty” effects of
platform.

2154

Transformer: Create espev=wmew(C) /%

abstract syntax conbcm,méx

create(C, expr,v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the object
denoted by expression expr.

well-typedness
expr : 7p, v € atr(D), atr(C) = {{vy : 11, expr?) | 1 <i < n}

semantics
dial veluas 25 yihes,

((Ua 5)7 (0/35/)) €t % a
iff 0/ = olug — o(ug)[v — u]]U{u— {v; —d; | 1 <i<n}},
g =Tul(e); we€ 2(C) fresh, i.e. u & dom(o);
ug = Ifexpr](o, B); d; = I[expr?](o, B) if expr{ # " and arbitrary
value from 2(r;) otherwise; 5 = {this — u}.

observables

(o5s DEsyiaa,

22/54

3 ObScreate|tiz] = {(uz, (*,0),u)}
éi (error) conditions
g I[expr](o) not defined.
Transformer: Destroy
abstract syntax concrete syntax
destroy(ezpr)
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness
expr : 170, C €€
semantics
observables
Obsaestroy[uz] = {(uz, (+,0),u)}
(error) conditions
I[expr](o, B) not defined.

£

2354

Destroy Transformer Example

— 12 — 2010-12-08 — Sstmsem —

S :
Mec /...;delete n;. ..
(&)
destroy(ezpr)
tdestroy(esz) [UI]((LE) = o000

/

g c:C |n|:C i
e: e’

What to Do With the Remaining Objeds?

— 12 — 2010-12-08 — Sstmsem —

Assume object ug is destroyed. . .
object u; may still refer to it via association r:
allow dangling references?
or remove ug from o(uq)(r)?
object ugp may have been the last one linking to object us:
leave uy alone?
or remove uy also?

Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This isin line with “expect the worst”, because there are target platforms which
don't provide garbage collection — and models shall (in general) be correct
without assumptions on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often
is to analyse. Valid proposal for simple analysis: monotone frame semantics,
no destruction at all.

2454

25/54

Transformer: Destroy

— 12 — 2010-12-08 — Sstmsem —

abstract syntax concrete syntax
destroy(expr)

intuitive semantics
Destroy the object denoted by expression expr.

well-typedness
expr : 170, C €€

semantics
tlus](o,€) = (o', €)
where 0’ = 0 {dom(o)\uy With u = I[ezpr](o, B).

observables
Obsdestroy[ux] - {(uma (+7 Q))a U)}

(error) conditions

I[expr] (e, B) not defined.

26/54

Sequential Composition d Transformers

— 12 — 2010-12-08 — Sstmsem —

o Sequential composition t; oty of transformers t; and t5 is canonically
defined as

(2 0 t1)[uz](0, €) = tafus](t1[us])(0, €))

with observation

ObS (150) (U] (0,€) = Obsy, [uz](0,€) U Obsy, [ug](t1(0, €)).

o Clear: not defined if one the two intermediate “micro steps” is not defined.

W=l f/.n—;y:.: Z;Z/~ u.7F

27 /54

Transformers And Denaotationd Semantics

— 12 — 2011-12-21 — Sstmsem —

—12 - 2011-12-21 — main —

Observation: our transformers are in principle the denotational semantics
of the actions/action sequences. The trivial case, to be precise.

Note: with the previous examples, we can capture
empty statements, skips, (S)

assignments,

clulp k20 o sai-q
S

< &x20) i+
conditionals (by normalisation and auxiljary variables),{soﬁ
create/destroy,

but not possibly diverging loops.

Our (Simple) Approach: if the action lapguage is, e.g. Java, then (syntacti-
cally) forbid loops and calls of recursiye functions.

Other Approach: use full blown denotatipnal semantics.

No show-stopper, because loops in the actign annotation can be converted into
transition cycles in the state machine,

Run-to-completion Sep

X7

17/'43

18/43

Transition Relation, Computation

— 12 - 2011-12-21 — Sstmrtc —

-)
Definition. Let A be a set of actions and S a (not necessarily
finite) set of of states.

We call
— CSxAxS

a (labelled) transition relation.
Let So C S be a set of initial states. A sequence
aop al a
Sg —> 81 —> S92 — ...

with s; € S, a; € A is called computation of the labelled transi-
tion system (S, —,Sy) if and only if

initiation: sy € Sy

consecution: (s;,a;, 8;4+1) €— for i € Ny.

L)

Note: for simplicity, we only consider infinite runs.

Active \s. Passve Class/Objeds

— 12 - 2011-12-21 — Sstmrtc —

Note: From now on, assume that all classes are active for simplicity.

We'll later briefly discuss the Rhapsody framework which proposes a way
how to integrate non-active objects.

Note: The following RTC “algorithm” follows [Harel and Gery, 1997] (i.e.
the one realised by the Rhapsody code generation) where the standard is
ambiguous or leaves choices.

19,43

20/43

From Core Sate Machinesto LTS

— 12 - 2011-12-21 — Sstmrtc —

_

Definition. Let % = (%, %, Vo, atrO@) be a signature with signals (all classes
active), 9 a structure of %, and (Eth, ready,®, S, [-]) an ether over 4 and 9.
Assume there is one core state machine M¢ per class C € €.

We say, the state machines induce the following labelled transition relation on states
S = E?QKU {#} with actions A := 22(%)xEvs(8.2) 5 92(€)xEvs(8,9) « P(F):

if and only if

(i) an event with destination w is discarded,
(ii) an event is dispatched to u, i.e. stable object processes an event, or

(iii) run-to-completion processing by u commences,
i.e. object u is not stable and continues to process an event,

(iv) the environment interacts with object u,

if and only if

v) s =# and cons = (), or an error condition occurs during consumption of cons.

e,
“C\]“l"“ (U7 5)

,Snd
(cons,Snd) (UI,E/)
u

s (cons,0) #

21/43

(i) Discarding An Event

— 12 - 2011-12-21 — Sstmrtc —

and

(0_75) (cons,Snd) (0/’6,)

u

v
an E-event (instance of signal E) is ready in ¢ for gff object of a class €, i.e.

Hu € dom(0) N 2(C) Jup € 2(€) : up € ready(e,w)

u is stable and in state machine state s, i.e. o(u)(stable) = 1 and o(u)(st) = s,

but there is no corresponding transition enabled (all transitions incident with
current state of u either have other triggers or the guard is not satisfied)

VY (s, F, expr, act,s') €— (SMc) : F # EV I[expr](c) =0

the system configuration doesn't change, i.e. 0’ = o

the event ug is removed from the ether, i.e.
e =e0ug,
consumption of ug is observed, i.e.

cons = {(u, (E,0(ug)))}, Snd = 0.
22/43

— 12 - 2011-12-21 — Sstmrtc —

. H signal, env
Example: Discard (sig H)
[x>0]/z:=2—1;n!J
SMC’: .* G[$ > O]/x =y & ({(signal))
[] 52 G.J
H/z:=y/x n G
0,1 z z: Int
y : Int ((env))
o c:C
lz=1,2=0y=2 (B',@j
st = s1 c
stable = 1

Ju € dom(o) N 2(C) o(u)(stable) =1, o(u)(st) = s,
Jug € (&) : ug € ready(e,u)

Y (s, F, expr, act,s’) e— (SMc) :
F # EVI[expr](c) =0

o' =0, =e0ug
cons = {(u, (E,o(ug)))}, Snd

=0

(“) D|SpatCh (0_’ E) (cons,Snd) (0/,8/) if

— 12 - 2011-12-21 — Sstmrtc —

Bu € dom(o) N 2(C) Jur € 2(&) : up € ready(e, u)

23/'43

u is stable and in state machine state s, i.e. o(u)(stable) = 1 and o(u)(st) = s,

a transition is enabled, i.e.

3 (s, F, expr, acl)
where & = olu.params g b ue].

and

,5) €= (SMc) : F = ENI[expr]() =1

(¢’,€") results from applying () to (0,¢) and removing ug from the ether, i.e.

(oﬂa EI) = tact (&7 S UE),

o' = (0" [u.st — g, u.stable — b, u.params i — 0])| e\

where b depends:

upg}

If u becomes stable in s’, then b = 1. It does become stable if and only if

there is no transition without trigger enabled for u in (¢/,¢’).
Otherwise b = 0.
Consumption of ug and the side effects of the action are observed,

cons = {(u, (E,o(ur)))}, Snd = Obs¢,,, (6, S ug).

i.e.

24 /43

({(signal, env))

Example: Dispatch o

[x>0]/z:=2—1;n!J

SMCZ .\@ G[$ > O]/x =y % ({(signal))
G.J

H/z:=y/x n c
0,1 z z: Int
y : Int ((env))

c:C
(o T e. /
] (&f) =< -
st =81 c K=2,s§:-§, 92
stable = 1 {-’-ré(l ,oz

£: @.‘é‘/

Ju € dom(c) N 2(C) o(u)(stable) =1, o(u)(st) = s,
Jug € (&) : ug € ready(e,u) .y }
E| (S,F, expr, act,s') c— (SMC) . (U 7_6_) - tact(o—v.‘g_e_uE)
F = E AIexpr](5) = 1 o' = (0"[u.st — &', u.stable — b, u.params g — O))| o)\ {us}
cons = {(u, (E,0(ug)))}, Snd = Obs, (5, S ug)
254

— 12 - 2011-12-21 — Sstmrtc —

¢ = olu.params g — ue].

(i) Commence Run-to-Completion

(0_7 5) (cons,Snd) (0/76,)
u

if

there is an unstable objectuof a class €, i.e.

AT
@u € dom(o) N 2(C) : o(u)(stable) =0
there is a transition without E@gdl enabled from the current state s = o'(u)(st),
i.e. g
3 (s, -, expr, act,s’) €= (SMc) : I[expr](o) =1

and

(', €") results from applying t,.; to (o,¢€), i.e.
v]
(0",€")E toei(o,€), o ="[u.st — s’ u.stable — b

where b depends as before.

Only the side effects of the action are observed, i.e.

cons = 0, Snd = Obsy,,, (0, ¢).

— 12 - 2011-12-21 — Sstmrtc —

26/43

— 12 - 2011-12-21 — Sstmrtc —

. signal, env
Example: Comnence)
[x>0]/z:=2—1;n!J
SMC’: T G[$ > O]/x =y & ({(signal))
[s1] 52 G.J
H/z:=y/x n c
0,1 z z: Int
[y : Int ((env))
c:C [
g.)
z=2,2=0,y =2 V4 ci o
st = So
stable = 0
£: e
Ju € dom(o) N 2(C) : o(u)(stable) =0 (0",€") = taet(o,€),
3 (s, -, expr, act,s') €= (SMc) : I[expr](c) =1 o' =0"[u.st — s', u.stable — b]
o(u)(stable) =1, o(u)(st) = s, cons =0, Snd = Obsy,,,(0,€)
27/13

(iv) Environment Interaction

— 12 - 2011-12-21 — Sstmrtc —

Assume that a set &.,, C & is designated as environment events and a set

of attributes v, C V is designated as input attributes.

Then
(O’,&“) (cons,Snd) (O'/,&‘/)
if

an environment event E € &epn, is spontaneously sent to an alive object

u € P(o), ie.

d=cU{ug—{vi—di|1<i<n}, & =c@ur
where ug ¢ dom(o) and atr(E) = {vi,...,vn}.
Sending of the event is observed, i.e. cons =0, Snd = {(env, E(d))}.

o
=

Values of input attributes change freely in alive objects, i.e.
Vv €V Vu € dom(a) : o' (u)(v) # o(u)(v) = v € Vepo.
and no objects appear or disappear, i.e. dom(c’) = dom(o).

g =¢&.

28/43

Exampl e: Environment

— 12 - 2011-12-21 — Sstmrtc

[x>0]/z:=2—1;n!J a

({(signal, env))

({(signal))

H/z:=y/x

C= C' b‘ |_| ‘r 0,1 z z: Int
y : Int ((env))

c:C
z=0,2=0,y =2

st = So
stable = 1

Gk
5:@) x‘) e

G,J

" c

sb-&
<table =4

O'/:UU{UEI—){UlHd,L‘ISZSn}

e’ =@ up where ug ¢ dom(o)
and atr(E) = {v1,..., v, }.

u € dom(o)
cons =0, Snd = {(env, E(d))}.

(v) Error Condtions

— 12 - 2011-12-21 — Sstmrtc

(coms,Snd)
—_—

if, in (i) or (iii),
I[expr] is not defined for o, or

tact is not defined for (o, ¢€),

and

u

#

consumption is observed according to (ii) or (iii), but Snd = 0.

Examples:
Ble 0}/ 0!
e
Eltrue] /yoy

@ Elexpr]|/z = a:/()@

29/43

30/43

Example: Error Condtion

— 12 - 2011-12-21 — Sstmrtc —

[x>0]/z:=2—1;n!J

SMe: ?E Glz > 0]/z =y %

H/z:=y/x
o c:C
i P —r (/.//2/)
st = 89 >#
stable =1 <

H

({(signal, env))

({(signal))
G.J

C

x,z: Int
y : Int ((env))

I[expr] not defined for o, or

tqct is not defined for (o, €) Snd =0

consumption according to (ii) or (iii)

Notions of Seps. The Sep

— 12 - 2011-12-21 — Sstmrtc —

. cons,Snd)
Note: we call one evolution (o, ¢) {oone.Snd), (o,¢€") a step.

u

Thus in our setting, a step directly corresponds to

one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We're going for an interleaving semantics without true parallelism.

Remark: With only methods (later), the notion of step is not so clear.

For example, consider

¢y calls £() at cg, which calls g() at ¢; which in turn calls h() for cs.

Is the completion of h() a step?
Or the completion of £()7

Or doesn't it play a role?

It does play a role, because constraints/invariants are typically (= by convention)
assumed to be evaluated at step boundaries, and sometimes the convention is meant

to admit (temporary) violation in between steps.

31/'43

32/43

Notions of Seps. The Run-to-Completion Sep

— 12 - 2011-12-21 — Sstmrtc —

What is a run-to-completion step...?

o Intuition: a maximal sequence of steps, where the first step is a
dispatch step and all later steps are commence steps.

o Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

Example:
Elz > 0]/

Jri=x—1

3343

Notions of Seps. The Runto-Completion Sep

c
What about this Example: = Int OI—HIH
n

SMec: [z # 0]/ SMbp: F/nx:=0

G m T) m e —{)

— 12 - 2011-12-21 — Sstmrtc —

3443

Notions of Seps. The Run-to-Completion Sep Cont’d

Proposal: Let

(comsg,Sndo) (consp—1,Sndn—1)
(0'0780) " - (O’n,En), n >0,
0 n—1

be a finite (') non-empty, maximal, consecutive sequence such that

object u is alive in oo,

=

uo = u and (conso, Sndo) indicates dispatching to u, i.e. cons = {(u, ¥ +— d)},

there are no receptions by u in between, i.e.
cons; N{u} x Evs(&,2) =0,i > 1,
Un—1 = u and w is stable only in og and oy, i.e.
oo(u)(stable) = on(u)(stable) =1 and o;(u)(stable) =0 for 0 < i < n,

Let 0 = k1 < ko < --- < ky = n be the maximal sequence of indices such
that up, = u for 1 <i < N. Then we call the sequence

(o0(u) =) on, (u), 08, (W) -+, oky (U) (= Tn—1(w))

— 12 - 2011-12-21 — Sstmrtc —

a (1) run-to-completion computation of u (from (local) configuration ao(u))35
/43

Divergence

We say, object u can diverge on reception cons from (local) configuration
oo(u) if and only if there is an infinite, consecutive sequence

(comsg,Sndg) (comnsy,Sndy)
- -

(00,€0) (01,€1)

such that u doesn't become stable again.

Note: disappearance of object not considered in the definitions.
By the current definitions, it's neither divergence nor an RTC-step.

— 12 - 2011-12-21 — Sstmrtc —

36/43

Run-to-Completion Sep: Discusson.

— 12 - 2011-12-21 — Sstmrtc —

—12 - 2011-12-21 — main

What people may dislike on our definition of RTC-step is that it takes a global
and non-compositional view. That is:

In the projection onto a single object we still see the effect of interaction with
other objects.

Adding classes (or even objects) may change the divergence behaviour of
existing ones.

Compositional would be: the behaviour of a set of objects is determined by the
behaviour of each object “in isolation”.
Our semantics and notion of RTC-step doesn't have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step
is an interleaving of local ones?
Maybe: Strict interfaces. (Proof left as exercise...)
(A): Refer to private features only via “self”.
(Recall that other objects of the same class can modify private attributes.)

(B): Let objects only communicate by events, i.e.
don't let them modify each other's local state via links at all.

Putting It All Together

37/'43

38/43

The Missng Piece Initial States

— 12 — 2011-12-21 — Stogether —

Recall: a labelled transition system is (S, —, Sp). We have

S system configurations (o, £)

. . cons,Snd
—: labelled transition relation (o, ¢) {cons,Snd), (o', €.
u

Wanted: initial states Sg.

Proposal:

Require a (finite) set of object diagrams OD as part of a UML model
(€9,54,09).

And set

Sy ={(0,e) |0 € GTHOD),0D € 6P, empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes.
We can read that as an abbreviation for an object diagram.

39/13

Semantics of UML Moddl — SoFar

— 12 — 2011-12-21 — Stogether —

The semantics of the UML model
M=(CD,SH4,09)

where

some classes in €2 are stereotyped as ‘signal’ (standard), some signals and
attributes are stereotyped as ‘external’ (non-standard),

there is a 1-to-1 relation between classes and state machines,
09 is a set of object diagrams over €2,

is the transition system (S, —,Sy) constructed on the previous slide.

The computations of M are the computations of (S, —,.Sy).

40,43

OCL Constraints and Behaviour

— 12 — 2011-12-21 — Stogether —

—12 - 2011-12-21 — main

Let M = (€2, 54 ,02) be a UML model.
We call M consistent iff, for each OCL constraint expr € Inv(€2),
o [= expr for each “reasonable point” (o,¢) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(.Z#) similar to Inv(€).

Pragmatics:

In UML-as-blueprint mode, if ## doesn't exist yet, then M = (62,0, 09)
is typically asking the developer to provide .## such that
M = (€9,54,09) is consistent.

If the developer makes a mistake, then M’ is inconsistent.

Not common: if .~/ is given, then constraints are also considered when choos-
ing transitions in the RTC-algorithm. In other words: even in presence of mis-
takes, the .“2# never move to inconsistent configurations.

41/'43

References

42/43

— 12 - 2011-12-21 — main

References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. IEEE Computer, 30(7):31-42.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

4343

