Software Design, Modelling and Analysis in UML

Lecture 06: Type Systems and Visibility

2011-11-23

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Type Theory

Recall: In lecture 03, we introduced OCL expressions with types, for instance:

```
\begin{array}{lll} expr ::= & w & : \tau & \dots | \text{logical variable } w \\ & & | \text{true} | \text{ false} & : Bool & \dots | \text{constants} \\ & | & 0 | -1 | 1 | 1 | \dots & : Int \\ & | & expr_1 + expr_2 & : Int \times Int \rightarrow Int & \dots | \text{operation} \\ & & | & \text{size}(expr_1) & : Set(\tau) \rightarrow Int \\ \end{array}
```

Wanted: A procedure to tell well-typed, such as (w:Bool)

from not well-typed, such as,

 $\mathsf{not}\,w$

size(w).

Approach: Derivation System, that is, a finite set of derivation rules. We then say *expr* is **well-typed** if and only if we can derive

 $A,C \vdash expr:\tau \qquad \qquad \text{(read: "expression } expr \text{ has type } \tau")$ for some OCL type τ , i.e. $\tau \in T_B \cup T_{\mathcal{C}} \cup \{Set(\tau_0) \mid \tau_0 \in T_B \cup T_{\mathcal{C}}\}, \ C \in \mathscr{C}.$

Contents & Goals

Last Lecture:

- Representing class diagrams as (extended) signatures for the moment without associations (see Lectures 07 and 08).
- Insight: visibility doesn't contribute to semantics in the sense that if \mathscr{S}_1 and \mathscr{S}_2 only differ in visibility of some attributes, then $\Sigma^{\mathscr{G}}_{\mathscr{I}_1} = \Sigma^{\mathscr{G}}_{\mathscr{I}_2}$ for each \mathscr{D} .
- And: in Lecture 03, implicit assumption of well-typedness of OCL expressions.

This Lecture:

- · Educational Objectives: Capabilities for following tasks/questions.
- Is this OCL expression well-typed or not? Why?
- How/in what form did we define well-definedness?
- What is visibility good for?
- Content:
- Recall: type theory/static type systems.
- Well-typedness for OCL expression.
- · Visibility as a matter of well-typedness.

A Type System for OCL

Excursus: Type Theory (cf. Thiemann, 2008)

2/32

5/32

A Type System for OCL

We will give a finite set of type rules (a type system) of the form

These rules will establish well-typedness statements (type sentences) of three different "qualities":

(i) Universal well-typedness:

$$\vdash expr : \tau$$

 $\vdash 1 + 2 : Int$

(ii) Well-typedness in a type environment A: (for logical variables)

$$A \vdash expr : \tau$$

 $self : \tau_C \vdash self .v : Int$

(iii) Well-typedness in type environment A and context D: (for visibility)

$$A, D \vdash expr : \tau$$

 $self : \tau_C, C \vdash self . r . v : Int$

3/32

Constants and Operations

o If expr is a boolean constant, then expr is of type Bool: $(BOOL) \cfrac{}{\vdash B : Bool}, B \in \{true, false\}$

Constants and Operations

- If expr is a boolean constant, then expr is of type Bool: $(BOOL) \qquad \qquad \vdash B: Bool \qquad , \qquad B \in \{\textit{true}, \textit{false}\}$
- $\bullet~$ If expr is an integer constant, then expr is of type Int:

$$(INT)$$
 $\overline{\vdash N:Int}$, $N \in \{0, 1, -1, ...\}$

• If expr is the application of operation $\omega: \tau_1 \times \dots \times \tau_n \to \tau$ to expressions $expr_1, \dots, expr_n$ which are of type τ_1, \dots, τ_n , then expr is of type τ :

$$\begin{array}{ll} (\mathit{Fun}_0) & \dfrac{\vdash \mathit{expr}_1 : \tau_1 \ \ldots \ \vdash \mathit{expr}_n : \tau_n}{\vdash \omega(\mathit{expr}_1, \ldots, \mathit{expr}_n) : \tau}, & \omega : \tau_1 \times \cdots \times \tau_n \to \tau, \\ & n \geq 1, \ \omega \not\in \mathit{atr}(\mathscr{C}) \end{array}$$

(Note: this rule also covers $=_{\tau}$, 'isEmpty', and 'size'.)

7/32

7/32

Type Environment

• Problem: Whether

w + 3

is well-typed or not depends on the type of logical variable $w \in W$

Approach: Type Environments

Definition. A type environment is a (possibly empty) finite sequence of type declarations. The set of type environments for a given set W of logical variables and types T is defined by the grammar

$$A ::= \emptyset \mid A, w : \tau$$

where $w \in W$, $\tau \in T$.

 $\text{\textbf{Clear:}} \ \, \text{\textbf{We} use this definition for the set of OCL logical variables} \, W \, \text{ and the types} \, T = T_B \cup T_{\mathscr E} \cup \{Set(\tau_0) \mid \tau_0 \in T_B \cup T_{\mathscr E} \}.$

Environment Introduction and Logical Variables

• If expr is of type au, then it is of type au in any type environment:

$$(EnvIntro)$$
 $\vdash expr : \tau$
 $A \vdash expr : \tau$

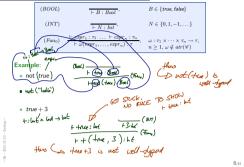
Care for logical variables in sub-expressions of operator application:

$$(\mathit{Fun}_1) \quad \frac{A \vdash \mathit{expr}_1 : \tau_1 \ \dots \ A \vdash \mathit{expr}_n : \tau_n}{A \vdash \omega(\mathit{expr}_1, \dots, \mathit{expr}_n) : \tau}, \quad \omega : \tau_1 \times \dots \times \tau_n \to \tau, \\ \quad n \geq 1, \ \omega \notin \mathit{dr}(\mathscr{C}),$$

• If expr is a logical variable such that $w:\tau$ occurs in A, then we say w is of type $\tau,$

$$(Var)$$
 $w : \tau \in A$
 $A \vdash w : \tau$

Constants and Operations Example



Type Environment Example

Example:



All Instances and Attributes in Type Environment

• If expr refers to all instances of class C, then it is of type $Set(\tau_C)$,

$$(\mathit{AllInst}) \quad \overline{ \quad \vdash \mathsf{allInstances}_C : \mathit{Set}(\tau_C) }$$

ullet If expr is an attribute access of an attribute of type au for an object of C as denoted by $expr_1$, then the premise is that $expr_1$ is of type τ_C :

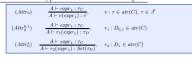
$$(Attr_0)$$
 $\frac{A \vdash expr_1 : \tau_C}{A \vdash v(expr_1) : \tau}$, $v : \tau \in atr(C)$, $\tau \in \mathscr{T}$

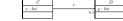
$$(Attr_0^{0,1})$$
 $\frac{A \vdash expr_1 : \tau_C}{A \vdash r_1(expr_1) : \tau_D}$, $r_1 : D_{0,1} \in atr(C)$

$$(Attr_0^*) \quad \frac{A \vdash expr_1 : \tau_C}{A \vdash r_2(expr_1) : Set(\tau_D)}, \quad r_2 : D_* \in atr(C)$$

12/32

Attributes in Type Environment Example





•
$$self : \tau_C \vdash self.x \nearrow$$
; hot

•
$$self: \tau_C \vdash self.r.x$$
: $X \mapsto \text{Syntax} \text{ arroy}_{x \in \text{self}}(D)$

•
$$self : \tau_C \vdash self.r.y$$

13/32

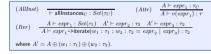
Iterate

- . If expr is an iterate expression, then
- . the iterator variable has to be type consistent with the base set, and . initial and update expressions have to be consistent with the result

$$(Her) \begin{array}{c} A \vdash \exp(z) \stackrel{\text{\tiny def}}{\overset{\text{\tiny def}}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}}{\overset{\text{\tiny def}}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}}{\overset{\text{\tiny def}}}{\overset{\text{\tiny def}}{\overset{\text{\tiny def}}}{\overset{\text{\tiny def}}}}{\overset{\text{\tiny def}}}{\overset{\text{\tiny def}}}{\overset{\text{\tiny def}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} \\$$

14/32

Iterate Example



Example: $(\mathscr{S} = (\{Int\}, \{C\}, \{x : Int\}, \{C \mapsto \{x\}))$

 $\mathsf{context}\ C\ \mathsf{inv}: x=0$

First Recapitulation

- I only defined for well-typed expressions.
- What can hinder something, which looks like a well-typed OCL expression, from being a well-typed OCL expression...?

$$\mathscr{S} = (\{\mathit{Int}\}, \{C, D\}, \{x : \mathit{Int}, n : D_{0,1}\}, \{C \mapsto \{n\}, \{D \mapsto \{x\})$$

· Plain syntax error-

 $\mathsf{context}\ C: \mathit{false}$

· Subtle syntax error:

context C inv : y = 0

· Types error:

 $\mathsf{context}\ \mathit{self}: C\ \mathsf{inv}: \mathit{self}\ .\ n = \mathit{self}\ .\ n\ .\ x$

15/32

16/32

Boths evaluate expre in the active sope (A) instead of A' as expre useds to be evaluated even with empty base set (es given by expre).

Casting in the Type System

17/32

20/32

Implicit Casts: Quickfix

Explicitly define

$$I[\mathsf{and}(expr_1,expr_2)](\sigma,\beta) := \begin{cases} b_1 \wedge b_2 & \text{, if } b_1 \neq \bot_{Bool} \neq b_2 \\ \bot_{Bool} & \text{, otherwise} \end{cases}$$

where

•
$$b_1 := toBool(I[expr_1](\sigma, \beta)),$$

•
$$b_2 := toBool(I[expr_2](\sigma, \beta)),$$

and where

$$toBool: I(Int) \cup I(Bool) \rightarrow I(Bool)$$

$$x \mapsto \begin{cases} true & \text{, if } x \in \{\text{dus}\} \cup I(\text{lust}) \setminus \{0, \bot_{\text{lust}}\} \\ false & \text{, if } x \in I \neq \text{lust}, 0\} \\ \bot_{Bool} & \text{, otherwise} \end{cases}$$

One Possible Extension: Implicit Casts

· We may wish to have

$$\vdash$$
 1 and false : Bool (*)

In other words: We may wish that the type system allows to use 0,1: Int instead of true and false without breaking well-typedness.

• Then just have a rule:

$$(Cast) \quad \frac{A \vdash expr : Int}{A \vdash expr : Bool}$$

- With (Cast) (and (Int), and (Bool), and (Fun₀)), we can derive the sentence (*), thus conclude well-typedness.
- But: that's only half of the story the definition of the interpretation function I that we have is not prepared, it doesn't tell us what (*) means...

18/32

21/32

Bottomline

- There are wishes for the type-system which require changes in both, the definition of I and the type system.
 In most cases not difficult, but tedious.
- . Note: the extension is still a basic type system.
- Note: OCL has a far more elaborate type system which in particular addresses the relation between Bool and Int (cf. [OMG, 2006]).

0 -

Implicit Casts Cont'd

```
So, why isn't there an interpretation for (1 and false)?
```

```
    First of all, we have (syntax)
```

```
expr_1 and expr_2: Bool \times Bool \rightarrow Bool
```

```
• Thus,
```

```
I(\mathsf{and}): I(Bool) \times I(Bool) \to I(Bool) where I(Bool) = \{\mathit{true}, \mathit{false}\} \cup \{\bot_{Bool}\}.
```

By definition,

```
I[1 \text{ and } \mathit{false}](\sigma,\beta) = I(\mathsf{and})(\quad I[1](\sigma,\beta), \quad I[\mathit{false}](\sigma,\beta) \quad), and there we're stuck.
```

19/32

Visibility in the Type System

22/32

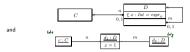
Visibility — The Intuition

$$\mathscr{S} = (\{Int\}, \{C, D\}, \{n : D_{0,1}, m : D_{0,1}, \langle x : Int, \xi, expr_0, \emptyset \rangle\},$$

$$\{C \mapsto \{n\}, D \mapsto \{x, m\}\}$$

23/32

Let's study an Example:

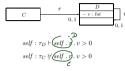


Assume $w_1: \tau_C$ and $w_2: \tau_D$ are logical variables. Which of the following syntactically correct (?) OCL expressions shall we consider to be well-typed?

ξ of x :	public	private	protected	package
$w_1 . n . x = 0$	V	~	later	not
	×	×	princeteus	s is
	?	?/	by des	' Gject
$w_2 . m . x = 0$	VI 6	V 111 >	later Wat O	not
	×	×		
	?	?		

Context

• Example: A problem?



- That is, whether an expression involving attributes with visibility is well-typed depends on the class of objects for which it is evaluated.
- $\bullet \ \ {\bf Therefore} \colon \ {\bf well-typedness} \ \ {\bf in} \ \ {\bf type} \ \ {\bf environment} \ \ A \ \ {\bf and} \ \ {\bf context} \ \ D \in \mathscr{C} \colon$

$$A,D \vdash expr: \tau$$

In a sense, already preparing to treat "protected" later (when doing inheritance).

24/32

Attribute Access in Context

• If expr is of type au in a type environment, then it is in any context:

$$(ContextIntro)$$
 $A \vdash expr : \tau$
 $A, D \vdash expr : \tau$

- \bullet Accessing an attribute v of an object of class C is well-typed
- ullet if v is public, or
- \bullet if the expression $expr_1$ denotes an object of class C :

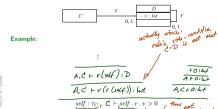
$$(Attr_1) \quad \frac{A, D \vdash expr_1 : \widehat{\tau_O}}{A, D \vdash v(expr_1) : \tau}, \quad \langle v : \tau, \xi, expr_0, P_{\mathcal{E}} \rangle \in atr(\mathcal{O})$$

$$\xi = +, \text{ or } \xi = - \text{ and } C = D$$

• Acessing $C_{0,1}$ - or C_* -typed attributes: similar.

25/32

Attribute Access in Context Example



The Semantics of Visibility

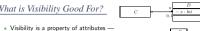
- Observation:
- Whether an expression does or does not respect visibility is a matter of well-typedness only.
- \bullet We only evaluate (= apply I to) $\mathbf{well\text{-}typed}$ expressions.
- \rightarrow We need not adjust the interpretation function I to support visibility.

What is Visibility Good For?

- Visibility is a property of attributes is it useful to consider it in OCL?
- In other words: given the picture above,
 is it useful to state the following invariant (even though x is private in D)

context C inv : n > 0?

What is Visibility Good For?



- is it useful to consider it in OCL?
- . In other words: given the picture above, is it useful to state the following invariant (even though x is private in D)

context C inv : n.x > 0 ?

It depends.

(cf. [OMG, 2006], Sect. 12 and 9.2.2)

- Constraints and pre/post conditions:
- Visibility is sometimes not taken into account. To state "global" requirements, it may be adequate to have a "global view", be able to look into all objects.
- But: visibility supports "narrow interfaces", "information hiding", and similar good design practices. To be more robust against changes, try to state requirements only in the terms which are visible to a class.

Rule-of-thumb: if attributes are important to state requirements on design models, leave them public or provide get-methods (later).

• Guards and operation bodies:

If in doubt, yes (= do take visibility into account).

Any so-called action language typically takes visibility into account.

References

Recapitulation

29/32

References

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical Report formal/06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

31/32 32/32

Recapitulation

. We extended the type system for

(casts (requires change of I) and)

visibility (no change of I).

• Later: navigability of associations.

Good: well-typedness is decidable for these type-systems. That is, we can have automatic tools that check, whether OCL expressions in a model are well-typed.

30/32