Sdtware Design, Modelli ng andAnalysisin UML

Ledure 06: Type Systems and Visibility

201%11-23

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Type Theory

Recall: In lecture 03, we introduced OCL expressions with types, for instance:
w iT ... logical variable w
| true | false : Bool ...constants
[O]=1]1]... :Int ... constants
| ezpry + expry, :Int x Int — Int ... operation
| size(expry) : Set(r) — Int

Wanted: A procedure to tell well-typed, such as (w : Bool)
notw
from not well-typed, such as,
size(w).

Approach: Derivation System, that is, a finite set of derivation rules.
We then say expr is well-typed if and only if we can derive
A Ct expr:T (read: “expression expr has type 7")

for some OCL type 7, i.e. 7 € Tg U T U {Set(ry) | 70 € Tz U Ty}, C € C. 4
=

Contents & Goals

Last Lecture:

« Representing class diagrams as (extended) signatures — for the moment
without associations (see Lectures 07 and 08).

o Insight: visibility doesn’t contribute to semantics in the sense that if %3 and
-, only differ in visibility of some attributes, then £, = £%, for each 7.

o And: in Lecture 03, implicit assumption of well-typedness of OCL expressions.

This Lecture:
+ Educational Objectives: Capabilities for following tasks/questions.
o s this OCL expression well-typed or not? Why?
= How/in what form did we define well-definedness?
« What is visibility good for?
« Content:
» Recall: type theory/static type systems.

« Well-typedness for OCL expression
« Visibility as a matter of well-typedness,

A Type System for OCL

5/

Excursus. Type Theory (cf. Thiemann, 2008

A Type System for OCL

We will give a finite set of type rules (a type system) of the form

(“name”) w “side condition”

‘conclusion’
These rules will establish well-typed it (type)
of three different “qualities”:
(i) Universal well-typedness:

Feaprit

F1+2:Int
(i) Well-typed in a type i A: (for logical variables)

At eapr:r

self 7o b self.v s Int

(iii) Well-typedness in type environment A and context D: (for visibility)
A DV expr:t
self : 7, C'& self .. v: Int

Constants and Operations

)

s rfﬂ‘\d:f

o I eapris a ?éean constany/then eapr is of type Bool:
(BOOL) B € {true, false}

+ B : Bool '
VP ile - cpidobin,
T0n
T3
Type Environment
« Problem: Whether
w+3

is well-typed or not depends on the type of logical variable w € W.

« Approach: Type Environments

Definition. A type environment is a (possibly empty) finite se-
quence of type declarations.

The set of type environments for a given set W of logical variables
and types T is defined by the grammar

Au=0|Aw:r

wherew e W, 7 € T.

I Clear: We use this definition for the set of OCL logical variables W and
§ the types T = Ty U T U {Set(ro) | 70 € T U T}

Constants and Operations

o If eapr is a boolean constant, then epr is of type Bool:

(BoOL) B € {true, false}

F B : Bool
o If expr is an integer constant, then expr is of type Int:
UNT) e NVelon-1..}

o If expr is the application of operation w : 7y X -+ X 7,, — T to expressions

expry,..., expr, which are of type 71,...,7,, then ezpr is of type 7:
Feapryim ... & expr, :
(Funo) FP(1 ! Zp)”. L WIT XX Ty T,
WLETPT L, -y €1PTy) 2 T n>1,wé¢ atr(?)

(Note: this rule also covers ‘=", ‘isEmpty’, and ‘size’.)

Environment Introduction andLogical Variables

o If expr is of type 7, then it is of type 7 in any type environment:

Feapr:T
Envlntro) ——2 T
(Bnolntro) - e opr 7

« Care for logical variables in sub-expressions of operator application:

Al expriim ... AF eapr, 7,
AT wleapry, - eapry)ir | CiTVXC X T ST
WAETPT L - oy 2P) * n>1, wé atr(€)

(Funy)

o If expr is a logical variable such that w : T occurs in A,
then we say w is of type 7,

(Var) w:TeA

AFw:r

1072

Constants and Operations Example

(BOOL)

B € {true, false}

Ne{o,1,-1,...}

WiT X X T T
n>1w atr(€)

s
o) (B voblipe) &
P

. "h#(“wl) DLJ
6o SJZO;“‘E o M

. true+3 / F A
bk > WE -
il b e ™
—_— (F)
g b (hee, 3)i0e
& o CA e #3 is wot leﬁgﬁ;w/

' 8/
Type Environment Example
b expr:T
(EnvIntro) T
Al empry:im ... AF expr, i Tn
) AEGEIT 00 APGRAE o oo oo,
(Funa) AF w(eapry,- eapry) : T :;,)L-ge :;(g) u
v A
(Var) e
Example:
cw+3, A : Int
er—-
112

All Instances and Attributes in Type Environment

« If capr refers to all instances of class C, then it is of type Set(7c),

Alllnst.
(Allinst) i alllnstancesc : Set(rc)

« If expr is an attribute access of an attribute of type 7 for an object of
C' as denoted by expr;, then the premise is that expr is of type 7¢:

L Abveprite i
(Attrg) AT o(eapry) 7 v:teatr(C), 7€7
Ab epry i 1e
0.1 Pry i TC B
(Attry™) A meapr) i r1: Doy € atr(C)
(Attry) Ab ey 7o ry: D, € atr(C)

AF ry(eapry) : Set(rp)’

ety evalkede expz b L asks gope (4)
nsheod of A as expf, weeds b be

akol den G- bag st @ pives
oviluabel stem o ooy 4%

Attributes in Type Environment Example

AT eapry i e R
(Attro) Al v:t€atr(C), 7€T
At expry 10
Attrd? ! n : D it
(Attrg) A=) 1 : Do € atr(C)
. AF expry i o
(Atry) o e ey D€ atr(C)

c N D
x:int yint

I | o1

o self 170 b oself.x g3 ot
o self i o+ self.rathy sy»;“‘; o
o self 7o - self .y

o self : 7p b self. :‘;f K&,,,utp)

Iterate Example

A eopr, 7o

Alllnst —_— 1 =
() AF v(ezpry) 7

T e, ()

At eapr,: Set(n) A'beapryims Ak eapryim

(Iter) -
= eapr, —>iterate(w : 71 ; w2 : T2 = eapr, | eapry) i T2

where A" = A @ (wy : 71) ® (w2 : 72).

Example: (% = ({Int},{C},{x : Int},{C > {z}))

context C' inv:x =0

135

Iterate

o If eapr is an iterate expression, then
« the iterator variable has to be type col

« initial and update expressions have tg be consistent with the result
variable:

Arogy:t(n) Arepnn A rogsn

istent with the base set, and

(lter) .
A& expry—>iterate(w; : T ; we 1 To = expry | expry) 1 T
Py (wy 1715 wa T2 pry | coprs) : 2

) sl R, 76 o
where A' = A® (w1 1) @ (wy 7). o

iy o W WL
o B i e 21

g e [552)
4

i o &L&C—)%(i]1)00))

(e

First Recapitulation

W« I only defined for well-typed expressions.

o What can hinder something, which looks like a well-typed OCL
expression, from being a well-typed OCL expression...?

7 = ({Int},{C, D}, {w : Int,n: Do1},{C > {n}, {D+— {x})

o Plain gurhs ey
context C': false

o Subtle syrbux eorwy:

context C'inv:y =0

T ey

g context self : Cinv: self .n = self .n.x

14/3

16/2

Casting in the Type System

1732
Implicit Casts. Quickfix
« Explicitly define
by Aby if by # Lo # b:
Iond(eapry, capra)l(o,) = 4 " 102 0017 L 70
LBoot ., otherwise
where
by := toBool(I[eapr,] (o, 3)),
o by := toBool(I[expr,](a, 3)),
and where
toBool : 1(Int) U I(Bool) — I(Bool)
true if x & {9l UTUt) \ 20, L1e}
T false ,if xe L Ale,0f
LBool , otherwise
202

One Posgble Extension: Implicit Casts

+ We may wish to have
F Land false : Bool (*)

In other words: We may wish that the type system allows to use
0,1: Int instead of true and false without breaking well-typedness.

o Then just have a rule:
At expr: Int

(Cast) 4t apr - Bool

With (Cast) (and (Int), and (Bool), and (Funy)),
we can derive the sentence (), thus conclude well-typedness.

But: that's only half of the story — the definition of the interpretation
function I that we have is not prepared, it doesn't tell us what (x) means...

18/%

Bottomline

» There are wishes for the type-system which require changes in both,
the definition of I and the type system.
In most cases not difficult, but tedious.

« Note: the extension is still a basic type system.

« Note: OCL has a far more elaborate type system which in particular
addresses the relation between Bool and Int (cf. [OMG, 2006]).

Implicit Casts Cont’d

So, why isn't there an interpretation for (1 and false)?
« First of all, we have (syntax)

expry and eapry : Bool x Bool — Bool

« Thus,
I(and) : I(Bool) x I(Bool) — I(Bool)
where I(Bool) = {true, false} U { L poot}-
« By definition,
I[1and false] (o, 3) = I(and)(I[1](c,3), I[false](c.)

and there we're stuck.

Visibility in the Type System

)

1973

22/m

\isibility —The Intuition 7~ “,,Tfhfi’@{’ ,(,foﬁz}’,mmn, Context Attribute Accessin Context

{C— {n}, D — {z,m}}

Let's study an Example: « Example: A problem? o If eapr is of type 7 in a type environment, then it is in any context:
_D 2 | Ak emprit
N r) ConteatIntro) ————————
- e ——md]- () ADFepr
d 0,1 0,1
an w1 w,
= n m) 2 N » Accessing an attribute v of an object of class C' is well-typed
paYs, &
self - 7p Hgelf .9.v >0 « if v is public, or
. « if the expression expr; denotes an object of class C':
Assume wy : 7c and ws : 7p are logical variables. Which of the following syntacti self :7c V v>0 !
a ? i i -typed?
cally correct (?) OCL expressions shall we consider to be well-typed . S . o ADE eapr, <5
« That is, whether an expression involving attributes with visibility is (Attry) .
)) h e A, D+ v(ezpr,
gofa public private protected package well-typed depends on the class of objects for which it is evaluated. L
wi.n.z=0 Ol ! later not « Therefore: well-typedness in type environment A and context D € €:
s ul o) /nr4%s “© s 5 X . R
N ? y ".S e ADF empr:T 3 « Acessing Cp,1- or C,-typed attributes: similar.
3 we.m.z=0 01| O D | later =0t 8
3 o 0l « In a sense, already preparing to treat “protected” later (when doing inheritance).]
5 ? ? H g
2332 243 2532
Attribute Accessin Context Example The Semantics of Visibility What is Visibility Good For? ‘ P
ol
(@teafisn) AT) A) FEXLL
ADF expr:T « Observation: » Visibility is a property of attributes —
(Atery) AA,D Famite e pey € atr(C), « Whether an expression does or does not respect visibility is a matter is it useful to consider it in OCL? ¢
WRIFaEEE) AT e 2 e = of well-typedness only. « In other words: given the picture above,
+ We only evaluate (= apply I to) well-typed expressions. is it useful to state the following invariant (even though x is private in D)
D iy i ns 7
r . We need not adjust the interpretation function T to support visibility: context C'inv : ng > 0
c Py Int T Jotd)
' 0,1
EST LI
Example: ac“""‘t’ e 2 it P
‘< i«
v
- —_—
FO st
Ak oelotf) D Py :
: A Fv(c(att)): bt ACkoilt .

262 27/n

self ic, Cbself v v>0 deas
A

o
(—b et foped
2832

What is Visibility GoodFor? —

0.1

« Visibility is a property of attributes — N

is it useful to consider it in OCL? _'—-’—‘
« In other words: given the picture above,

is it useful to state the following invariant (even though x is private in D)

context C'inv:n.a>07?

« It depends. (cf. [OMG, 2006], Sect. 12 and 9.2.2)

o Constraints and pre/post conditions:
 Visibility is sometimes not taken into account. To state “global” requirements,
it may be adequate to have a “global view", be able to look into all objects.
« But: visibility supports “narrow interfaces”, “information hiding”, and
similar good design practices. To be more robust against changes, try to
state requirements only in the terms which are visible to a class.
Rule-of-thumb: if attributes are important to state requirements on design
models, leave them public or provide get-methods (later).
o Guards and operation bodies
If in doubt, yes (= do take visibility into account)

Any so-called action language typically takes visibility into account. 28

References

31m

Reaapitulation

295

References

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical
Report formal /06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

32/m

Recapitulation

Class Diagrams €2
% induces M"Ai
extended (1) signature .#(¢'2)
gives rise to odey
Basic Type System

« We extended the type system for
(+ casts (requires change of I) and)

lity (no change of 7).

« Later: navigability of associations.

Good: well-typedness is decidable for these type-systems. That is, we can have
automatic tools that check, whether OCL expressions in a model are well-typed.

30732

