
Co�de�nite Set Constraints

Witold Charatonik Andreas Podelski

Max�Planck�Institut f�ur Informatik
Im Stadtwald� D������ Saarbr�ucken� Germany

fwitold�podelskig�mpi�sb�mpg�de

Abstract

In this paper� we introduce the class of co�de	nite set constraints
 This is a natural sub�
class of set constraints which� when satis	able� have a greatest solution
 It is practically
motivated by the set�based analysis of logic programs with the greatest�model semantics

We present an algorithm solving co�de	nite set constraints and show that their satis	a�
bility problem is DEXPTIME�complete

� Introduction

Set constraints and set�based analysis form an established research topic� It combines theo�
retical investigations ranging from expressiveness and decidability to program semantics and
domain theory� with direct practical applications to type inference� optimization and veri��
cation of imperative� functional� logic and reactive programs �see ��� �	�
�� for overviews�

In set�based analysis� the problem of reasoning about runtime properties of programs is
transferred to the problem of solving set constraints� The design of a system for a particular
program analysis problem �for a particular class of programs involves two steps� �� single
out a subclass of set constraints and devise an algorithm for solving set constraints in this
subclass� and �
 de�ne a mapping P �� �P from programs into this subclass and show the
soundness of the abstraction of P by a distinguished solution of �P � The advantage with
respect to other static�analysis methods is the common to all constraint�based approaches�
the logical formulation of the problems allows for their classi�cation and for the reuse of
optimized implementations� It is thus important to classify the arising constraint�solving
problems and devise algorithms for them�

In this paper� we de�ne the subclass of co�de�nite set constraints� This is a natural
subclass of set constraints which� when satis�able� have a greatest solution� We present an
algorithm solving co�de�nite set constraints in DEXPTIME� The algorithm involves some novel
adaptations of standard techniques for solving set constraints to the new situation where the
solutions range over sets of in�nite trees and must be constructed by co�induction �and not by
induction as with least solutions� We show how one can encode the problem of emptiness of
intersection of tree automata in a direct way� Thus� the satis�ability problem is DEXPTIME�
complete�

The new class of co�de�nite set constraints is practically motivated by the set�based anal�
ysis of reactive logic programs �called perpetual processes in ����� Their semantics is de�ned
by the greatest �xpoint of the immediate consequence operator TP � which at the same time is

�

the greatest model� The semantics is de�ned not over �nite but over in�nite trees�� Our al�
gorithm accounts for either case� In �
��� we show that the greatest solution of the co�de�nite
set constraint �P that we assign to the program P is larger than the greatest model of P � The
error diagnosis for concurrent constraint programs �the static prediction of the inevitability
of failure or deadlock� which is presented in �
��� is based on that fact and employs the
algorithm presented here�

Related work� Heintze and Ja�ar ���� �
� formulated the general problem of solving set
constraints and gave the �rst decidability result for a subclass of set constraints which they
called de�nite� for the reason that all satis�able constraints in the class have a least solution�
They have singled out this subclass for the analysis of logic programs with the �standard
least model semantics� The present authors ��� have recently characterized the complexity for
this subclass �DEXPTIME� The general problem is NEXPTIME�complete �	� ���

De�nite and co�de�nite set constraints are not dual with respect to their syntax� We
must exclude constraints of the form f�x� y � f�a� a � f�b� b which do not have a greatest
solution� They are also not dual with respect to the constraint solving problem �although the
two complexity characterizations might suggest this� Although one can directly dualize the
Boolean set operators and also the tree constructors� this is not the case for the projection
operator� The complement of the application of the projection is generally not the application
of the projection of the complement� The algorithm given in Section 	�
 in ���� does therefore
not compute the greatest solution� �The greatest solution of x � f����� �f�a� a is fag� but

starting from this constraint that algorithm yields x � � whose greatest solution is �� This
is because x � dual�f����� �f�a� a � f����� �dual �f�a� a � f����� ��f � f��a��� f����a � �

and thus x � dual�� � ��
In de�nite set constraints� union is expressed via conjunction �e�g�� a�b � y by a � y�b � y

and need not be dealt with explicitly� Co�de�nite set constraints employ union as an operator
over terms� and conjunction introduces intersection additionally� The next example shows
that our algorithm must combine ��multiply out� intersections of unions of terms� �How can
this be done in single exponential time� � There are exponentially many union terms� The
co�de�nite set constraint

y � f�a� c � f�c� b �
y � f�a� c � f�d� b

��

is satis�able in conjunction with a � f����� �y but unsatis�able in conjunction with b � f����� �y�

Analyzing logic programs with the least model semantics� Mishra ���� has used a class of
set constraints with a non�standard interpretation over non�empty path�closed sets of �nite
trees� which also have a greatest solution� In that interpretation� f�x� y � f�a� a�f�b� b has
a greatest solution �which assigns both variables x and y the set fa� bg� Heintze and Ja�ar ����
have shown that Mishra�s analysis is less accurate than theirs in two ways� due to the choice
of the greatest solution and due to the choice of the non�standard interpretation� respectively�

�The reactive logic program P � p�f�x�� � p�x� illustrates the di�erence between in�nite and �nite
trees� When interpreted over �nite trees� the greatest model is the empty set� otherwise� it is the singleton
containing the in�nite tree f�f�f�� � ����� In either case� the execution of the call of p�x� does not fail� More
generally� one can characterize �nite failure by the greatest model in the case of in�nite trees� but not in the
case of �nite trees� In 	
�� we use code�nite set constraints to approximate the greatest model� we have to
interpret them over sets of in�nite trees in order to apply this approximation to the prediction of �nite failure
of logic programs and of errors in concurrent constraint programs�

We show that the choice of the non�standard interpretation over path�closed sets of trees is not
traded with by a lower complexity� Our hardness proof for co�de�nite set constraints carries
over to Mishra�s set constraints� This is because the tree automata used in the reduction
can be chosen deterministic �

�� We give an algorithm solving Mishra�s set constraints in
exponential time for comparison and for completeness� Path�closed interpretations are a
subtle issue which has to be dealt with carefully�

� De�nitions

A �general set expression e is built up by� variables� tree constructors� the Boolean set
operators and the projection operator ����� If e does not contain the complement operator�
then e is called a positive set expression� A �general set constraint is a conjunction of
inclusions of the form e � e��

De�nition � A co�de�nite set constraint is a conjunction of inclusions el � er between
positive set expressions� where the set expressions el on the left�hand side of � are furthermore
restricted to contain only variables� constants� unary function symbols and the union operator
�that is� no projection� intersection or function symbol of arity greater than one�

We assume given a ranked alphabet � �xing the arity n 	 � of its function symbols f� g� � � �
and constant symbols a� b� � � �� and an in�nite set Var of variables x� y� z� u� v� w� � � �� The
formulations and results in this paper apply to either case� �nite trees� or in�nite trees� We
then say simply trees and use the notation T�� We reserve T�� for the set of in�nite trees�
whose branches are in�nite or �nite�

We interpret set constraints over P�T�� the domain of sets of trees over the signature ��
That is� the values of variables are sets of trees� or� a valuation is a mapping � � Var � P�T��
Tree constructors are interpreted as functions over sets of trees� the constant a is interpreted
as fag� the function f applied to the sets S�� � � � � Sn yields the set ff�t�� � � � � tn j t�

S�� � � � � tn
 Sng� The application of the projection operator for a function symbol f and the
k�th argument position on a set S of trees is de�ned by f���k� �S � ft j �t�� � � � tn � tk �

t� f�t�� � � � � tk� � � � � tn
 Sg�
The next remark �which is proven by checking all cases of possible inclusions implies an

important property� if a co�de�nite set constraint is satis�able� then it has a greatest solution�

Remark � The solutions of co�de�nite set constraints are closed under arbitrary union� �

For the formal treatment� we will use co�de�nite set constraints in a restricted form� which
we will simply call constraints�

De�nition � �restricted syntax� constraints �� A constraint � is a co�de�nite set con�
straint in the syntax given below�

� ��� x j f��u j �� � �� j �

� ��� a � x j x � � j x � f���k� �u j �� � ��

Since we can no longer express the empty set by a � b� we have added the symbol �� which
is the neutral element wrt� �� By convention� the empty union is � �i�e��

S
� � �� similarly�T

� � ��

�

�� x � y � y � z � x � z

� x � �� � y� y � �� � x � �� � ��

�� � � u � f���k��x �
V
i u �

S
j uij where

T
i

S
j uij � f���k� �x� �

	� � � u � f���k��x � u � � if f���k� �x� � � �

�� a � x � x �
S
i fi��ui � false if a � fi for all i

�� a � x � x � � � false

Table �� Satis�ability�complete axiom scheme for constraints �

We write �u for the tuple �u�� � � � � un of variables and �t for the tuple �t�� � � � � tn of trees�
where n 	 � is given implicitly �e�g�� in x � f��u by the arity of the function symbol f� We
write �u � �v for fu� � v�� � � � � un � vng� As is usual� we identify a conjunction of constraints
with the set of all conjuncts�

We use Var�E for the set of variables contained in the expression E� and Terms�� for
the sets of all �at terms � �i�e�� without union occurring in �� We use ��� for the set of all
function symbols occurring in �� this set is �nite��

Given a co�de�nite set constraint� we can transform it into an equivalent one of restricted
syntax easily� We eliminate function and union symbols on the left�hand side by using the
equivalences f�e � e� i� e � f����� �e

� and e� � e� � e i� e� � e � e� � e� We �atten the
terms on the right�hand side by replacing intersection with conjunction and by introducing a
fresh variable for each subexpression occurring on the right�hand side of inclusions� Since we
are interested in the greatest solution of the initial constraint� it is enough to write only one
inclusion �instead of equality between the new variable and the expression� For example� we
replace the inclusion x � f����� �y� � y� by x � f����� �y � y � y� � y � y�� The transformation
does not change the complexity measure� The number of new variables is linear in the size of
the initial constraint�

� Algorithm

The algorithm for solving a constraint �� computes the �xpoint under the operator that�
applied to a constraint �� adds the direct consequences of � under the axioms given in Table �
to �� The algorithm is presented in Table
� In the case of Axioms � and 	� the operator
adds only the direct consequences that are obtained by applications where the constraint �
is instantiated to � �as opposed to� a subpart of ��� Computing the expressions f���k� �x� �

�We do not want to assume that the signature � is �nite� This is important for the use of set constraints
in �modular� program analysis� the constructor alphabet is never fully known� or is assumed to be extensible�

�Applying the axioms to subparts of a constraint with� say� m conjuncts would amount to applying the
axioms
m times� All applications to proper subparts are redundant� For example� u � v could be inferred
from � � u � f��

���
�x�� x � f�v�� x � a under Axiom �� it is redundant wrt� the consequence u � � by

	

� �� ��
Repeat

apply Axioms � and
 to �

apply Axioms � and 	 to � where � is instantiated to �

apply Axioms � and � to �

add all direct direct consequences to �

Until � does not change or � contains false
If � contains false

then ��� is unsatis�able�
else ��� is satis�able� and �C

� �� � ��� is closed form of ���

Table
� Algorithm solving a constraint ��

in Axioms � and 	 is involved� we will discuss this in Section ����
A constraint obtained as the �xpoint under the operator of the algorithm is in closed form�

and �C is the closed form of �� Note that �C is not closed under all �possibly redundant
consequences under the axioms in Table ��

We will next introduce automaton constraints � �Section ���� These form a subclass
of co�de�nite set constraints which directly exhibit their greatest solution �Remark
� We
can construct� with each constraint �� an automaton constraint ��� �Section ��
� We use
��� for computing the expressions f���k��x� � in Axioms � and 	 �Section ���� �To give

some intuition� As indicated by the example �� in the introduction� we cannot apply the
projection operator on terms � directly but we have to �rst combine them and transform
them into expressions with intersections below the function symbol� This leads us out of the
restricted syntax of constraints �� Furthermore� if the constraint � is in closed form then it
has the same greatest solution as ����

Before going into more detail� we summarize the main results of this section�

Theorem � The algorithm in Table
 computes the closed form �C of the input constraint �
in single exponential time� The constraint � is unsatis�able if and only if �C contains false�
otherwise� the greatest solution of � is presented by ���C�

Proof� See Propositions ��
 and � in Section 	� �

Theorem � The satis�ability problem for co�de�nite set constraints is DEXPTIME�complete�

Proof� See Propositions � and 	 in Section �� �

��� Automaton constraints �

We assume given a set q�Var of variables q� q�� � � � which we want to distinguish from variables
x� y� � � � in Var� Later we will take variables q that stand for intersections x� � � � � � xk of
variables xi
 Var�

instantiating � with �� Note that conjunction � is idempotent� the conjunct u � f��
�k�

�x� in the axioms is� of

course� instantiated to a conjunct of ��

�

De�nition 	 �automaton constraint �� An automaton constraint � is a conjunction of
the form � �

V
i qi � Ei such that

� the variables qi are pairwise di�erent� and

� each expression Ei is either � or of the form
S
j fj��qj�

A variable q is unbounded in � if q is di�erent from all qi�s on the left�hand side in ��

The interpretation of automaton constraints is as usual� A valuation is now a mapping from
q�Var to sets� The next remark justi�es the name automaton constraint�

Remark � The value of a variable q in the greatest solution of an automaton constraint �
is the language L�A��q of the top�down tree automaton A��q constructed directly from
�� in particular� the emptiness of the value of q can be tested in polynomial time�

We give the construction of the automata and the proof of the remark in the appendix since
we did not �nd it in the literature� it must� however� be folklore �cf� also �
��

��� Constructing ����

Given a constraint �� we can extract an automaton constraint ��� from � which is equivalent
to its subpart consisting of the conjuncts of the form x �

S
j fj��uj� The variables q in ���

stand for intersections x� � � � � � xn of variables xi
 Var� We note ��Var the set that these
intersection variables q form� We use also

T
S as another notation for q that stands for the

intersection of the variables in S � Var� The proper upper bounds � of a variable x in � are
the terms of the form � �

S
j fj��uj such that x � � lies in �� Note that � may be ��

We next de�ne their combination� for variables x as well as for intersections q�

De�nition
 �lub�x� �� lub�q� �� The least upper bound of the variable x in the con�
straint � is an intersection of terms � �

lub�x� � �
�
f
�

j

fj��uj j x �
�

j

fj��uj lies in �g�

The least upper bound of an intersection q � x� � � � � � xn is lub�q� � �
Tn
i�� lub�xi� ��

If x does not have proper upper bounds in � then lub�x� � � �� Also� note that��� � ��� � �
and � � � � � �

The expression E � lub�q� � is an intersection of unions of proper terms f��u� We
transform such an expression E into a union of terms f��q over intersections of variables q�
hereby using a variant of the disjunctive normal form �the computation of the standard one
would here require doubly�exponential time�

De�nition � �FDNF� The full disjunctive normal form of E �
T
i�I

S
j�Ji fij��uij is a

union of terms f��q over intersection variables q�

FDNF �E �
S
ff �
T
S� � � � � �

T
Sn j f
 �� n � arity�f�

S� � Var�E� � � � � Sn � Var�E�

�i
 I �j
 Ji � f � fij � uij��
 S� � � � � � uij�n
 Sng�

�

for all q
 ��Var��

Eq �� lub�q� � �De�nition 	

E�
q �� FDNF �Eq �De�nition �

��� ��
V
q���Var��� q � E�

q �De�nition �

construct transition table of automata A	����q �same for all q� De�nition �	 in Appendix

for all q
 ��Var��

test emptiness of L�A	����q �Remark

for all inclusions u � f���k��x in �

Ex
�k� �� pre�f���k� �E

�
x���� �De�nition �

f���k� �x� � �� FCNF �E x
�k� �De�nition �

Table �� Subprocedure computing f���k��x� � for all inclusions u � f���k� �x in constraint �

Example � If E � �f�u� v� � f�u� v� � f�u� u then FDNF �E is the expression f�u� u �
v�� f�u� u� v� � � � � � f�u� v� � v�� u � v� � v� which contains redundant disjuncts� Using
the convention that

S
�� we take E � a � b and have FDNF �E � �� If E � � then

FNDF �E � ��

Given a constraint �� we note ��Var�� the set of all q standing for intersections x� � � � ��xn
of variables xi
 Var�� occurring in �� We now can give the construction of the automaton
constraint ��� from the constraint ��

De�nition ����� The automaton constraint corresponding to the constraint � is

��� �
�

q���Var���

q � FDNF �lub�q � ��

We discard from ��� all inclusions of the form q � ��

��� Projection f���k� �x� ��

Given a conjunct u � f���k��x in the constraint �� and the �unique expression Ex such that

x � Ex lies in ���� we want to express f���k� �Ex �the projection f���k� applied to Ex as an
expression Eu such that we can add u � Eu to ��

Assume that Ex is of the form Ex � f�q�� � � � � qn� Then one can infer u � � if the value
of at least one of q�� � � � � qn is the empty set in the greatest solution of ��� �we set Eu � ��
This is the case if one of the automata A	����qi constructed from ��� recognizes the empty
set� This again can be expressed as

L�A	����f�q�� � � � � qn � � �

�

where we set L�A��f�q�� � � � � qn � f�L�A��q�� � � � �L�A
��qn� Otherwise �i�e�� if the

values of q�� � � � � qn are all nonempty� and condition �
 does not hold� one can infer u � qk
�we set Eu � qk�

In general� Ex is of the form Ex �
S
i fi�qi�� � � � � qini� Now� assume f�q�� � � � � qn is a

member of this union� If condition �
 is satis�ed� then this member can be discarded from
the union� Otherwise� we add qk to the union which forms Eu�

De�nition � �pre�f���k� �E��� The k�th pre�projection of f applied to an expression E �
S
i fi�qi�� � � � � qini with respect to the automaton constraint �� is the union of intersections

pre�f���k� �E�� �
�
fqik j f � fi�L�A

��fi�qi�� � � � � qini � �g�

We set FDNF �� � ��

By applying the pre�projection we obtain expressions E such that the inclusions u � E

are not yet directly expressible in the restricted syntax of constraints �� We can� however�
transform a union of intersection variables into an intersection of unions using a variant of the
conjunctive normal form �the computation of the standard one would here require doubly�
exponential time� We then obtain an expression of the form E� �

T
i

S
j uij� We can express

u � E� as the conjunction
V
i u �

S
j uij� which we then can add to �� remaining within the

restricted syntax of constraints�

De�nition � �FCNF� The full conjunctive normal form of a union of intersection variables
E �

S
i�I

T
j�Ji uij is an intersection of unions of variables x
 Var�

FCNF �E �
�
f
�

S j S � Var�E � �i
 I �j
 Ji � uij
 Sg�

We set FCNF �� � ��

Now� we can compose the operations de�ned above and obtain the full projection operation�

De�nition � �f���k� �x� �� The k�th projection of f
 � applied to the variable x
 Var wrt�
to the constraint � is an intersection of unions of variables uij
 Var�

f���k� �x� � � FCNF �pre�f���k� �FDNF �lub�x � �������

Given a constraint �� we compute the projections f���k� �x� � simultaneously for all variables x

such that an inclusion u � f���k��x exists in �� The corresponding subprocedure is presented
in Table ��

� Correctness of the algorithm

The next two lemmas simply express that both full normal forms preserve the meaning of an
expression�

Lemma � �FDNF� For any expressionE of the form
T
i�I

S
j�Ji fij��uij� the equality ��E �

��FDNF �E holds for every valuation ��

�

Proof� To see that ��E � ��FDNF �E � transform E into a disjunctive normal form�
Now� using the equality ��f��u � g��v � � for f � g and the equality ��f�u�� � � � � un �
f�v�� � � � � vn � ��f�u� � v�� � � � � un � vn� we can transform the result to an expression
such that it is in disjunctive normal form and each disjunct satis�es the condition from the
de�nition of FDNF �E �

To see that ��FDNF �E � ��E � take the partial ordering on tuples of intersections
de�ned by �

T
S�� � � � �

T
Sn � �

T
S��� � � � �

T
S�n �which we abbreviate by

T
S �

T
S� if Si � S�i

holds for all i � �� � � � � n� We observe that� if
T
S �

T
S�� then ��f�

T
S � f�

T
S� �

��f�
T
S� Discard from FDNF �E all disjuncts that are not minimal in this ordering� and

call the result F � By the observation above� ��FDNF �E � ��F � We have to show that
��F � ��E� Take any disjunct f�

T
S from F � We will show that the value of this disjunct

under � is equal to the value of some disjunct from the disjunctive normal form of E� We
know that for all i
 I there exists a ji
 Ji such that fiji � f and �uiji
 S� Hence� for all
k � �� � � � � arity�f� it holds that

S
i�Ifuiji�kg � Sk� and by the minimality of

T
S these two

sets are equal� The expression
T
i�I f��uiji occurs in the disjunctive normal form of E and

��f�
T
S � ��

T
i�I f��uiji� �

Lemma � �FCNF� For any expression E of the form
S
i�I

T
j�Ji uij � the equality ��E �

��FCNF �E holds for every valuation ��

Proof� The proof is similar to the proof of Lemma �� we can take the expression dual to E

�replace unions with intersections and vice versa� compute the full disjunctive normal form
�this time over variables� not terms f��u and then take once more the dual� which is in
conjunctive normal form� �

Proposition � �Soundness� The axioms in Table � are valid� In particular� if a constraint
� is satis�able then its closed form �C does not contain false�

Proof� The proof is done by inspection of each axiom� The validity of Axioms � and 	 follows
from consecutive applications of Lemma �� Remark
� and Lemma
� �

Proposition � �Completeness� If the closed form �C of a constraint � does not contain
false then � is satis�able� Moreover� the greatest solution of � is the greatest solution of the
automaton constraint ���C�

Proof� Let � be the valuation de�ned by ��x � L�A�x� where A�x is the automaton
corresponding to ���C and the variable x� By Remark
� the unique extension of � to
��Var�� is the greatest solution of ���C� Below we show that � satis�es each conjunct in
�� Since � implies ���C� this will show that � is the greatest solution of ��

The conjuncts of the form x �
S
i fi��ui are trivially satis�ed� since FDNF �lub�x � �C is

equivalent to an intersection of the expressions
S
i fi��ui�

We will show the satisfaction of the constraints x �
S
i fi��ui �

S
j yj �this includes the

case x � y indirectly� Suppose t
 ��
S
i fi��ui �

S
j yj� we will show t
 ��x� Since

t
 ��yj for all j� the variables yj cannot be unbounded in ���C� Hence� every variable
yj occurs in a constraint of the form yj �

S
k fjk��ujk in �C �which includes the case of

empty union yj � �� Since t
 ��FDNF �lub�yj � �
C for all j� there is a constraint of

the above form in �C such that t
 ��
S
k fjk��ujk� By Axiom
� �C contains a constraint

x �
S
i fi��ui �

S
j

S
k fjk��ujk such that t does not belong to the value of the right�hand side

of the inclusion under �� Hence� t
 ��x�
The proof for the constraints u � f���k� �x is similar� If t
 ��f���k� �x� then� by the

de�nition of projection� for all trees t�� � � � � tn such that tk � t and n is the arity of f �
f�t�� � � � � tn
 ��x� Let FDNF �lub�x � �C �

S
i fi��qi � Then� for all t�� � � � � tn as above�

f�t�� � � � � tn
 ��
S
fi j f�fi�L�A�fi�
qi������g f��qi� Hence� t
 ��

S
fi j f�fi�L�A�fi�
qi��� ���g qi�k�

By Axioms ��	 and Lemma
� �C contains a sequence of constraints equivalent to u �S
fi j f�fi�L�A�fi�
qi������g qi�k� Hence� t
 ��u�
The last case are the constraints of the form a � x� Again� if a
 ��x then x is bounded

in ���C and a does not occur in FDNF �lub�x � �C � But then� by Axiom � or �� false
 �C �
which is a contradiction� �

� Complexity

Proposition 	 �upper bound� The algorithm in Table
 computes the closed form �C of
the input constraint � in single exponential time�

Proof� For an input � of size n� the number of �at terms and variables that occur in � is
bounded by n� Each derived inclusion involves a variable in V�� on the left�hand side and a
union of variables and �at terms on the right�hand side� All these �at terms occur in �� Thus�
the number of derived inclusions is bounded by n �
n� At each iteration of the algorithm� the
consequences of all �pairwise combinations of inclusions under Axioms �!
 are computed�
This amounts to a cost of O��n
n�� Adding consequences of Axioms � and 	 is done in
exponential time �say� O�
n

c

 by the lemmas below and by the polynomial time complexity of
the emptiness test for tree automata �also in the case of B"uchi tree automata �
	�� There may
be at most n
n iterations� Adding consequences of Axioms � and � costs at most n
n� since the
number of inclusions a � x is bounded by n and number of inclusions with x on the left�hand
side is bounded by
n� Hence� the whole algorithm runs in time O���n
n�#
n

c

 �n
n#n
n�

Lemma 	 For any intersection q� FDNF �lub�q � � can be computed in time exponential in
the size of ��

Proof� Let E � lub�q� � and n be the size of �� To compute FDNF �E � we check� for
all f
 ��� and all sequences �S�� � � � � Sa�f� such that Si � V�E for i � �� � � � � a�f� if
the condition from the de�nition of FDNF is satis�ed� The size of V�E is at most n� so
the number of terms f�

T
S�� � � � �

T
Sa�f� is bounded by j���j�
nk� where k is the maximal

arity of a symbol in ���� Hence� the number of these terms is bounded by
n
c

for some
constant c �note that k 	 n� To check the condition� we have to run through the constraints
x �

S
j fj��uj such that x occurs in the intersection q� The number of such constraints is

bounded by n
n� For each such constraint� checking if there exists a j such that f � fj and
uj��
 S�� � � � � uj�a�f�
 Sa�f� can be done in time polynomial in the size of the constraint and
the sequence �S�� � � � � Sa�f� �which is polynomial in n� Therefore� the whole procedure runs

in time O�
n
c

� n
n � poly�n� which is single exponential� �

Lemma
 For any expression E �
S
i�I

T
j�Ji uij � the expression FCNF �E can be computed

in time exponential in the number of variables in V�E�

��

Proof� The proof is analogous to the proof of the lemma above� �

Proposition
 �lower bound� The problem of the satis�ability of the co�de�nite set con�
straints is DEXPTIME�hard�

Proof� The proof follows by the reduction of the problem of the emptiness of the intersection
of tree automata � ��� For given n tree automata� let ��� � � � � �n be the constraints bounding
the variables X�� � � � �Xn to the languages of the automata� Then� the constraint

a � f����� �f�a�X� � � � � �Xn

is satis�able if and only if the intersection of the languages is nonempty� �

Since intersection corresponds to conjunction� one can expect the DEXPTIME lower
bound for every formalism of set constraints that can express regular sets of trees�

� Path�closed set constraints

In this section we will consider the class of set constraints that was originally introduced by
Mishra ���� and which we call path�closed set constraints� The class is syntactically larger�
terms f�x�� � � � � xn may occur also on the left�hand side of an inclusion �union on the left�
hand side is trivial� The interpretation is now over non�empty path�closed sets of trees� More
precisely� a valuation � satis�es the inclusion E � E� between two expressions E and E� if
and only if ��E is a non�empty set and PC���E � PC���E�� Here� PC�X denotes the
path�closure of the set X of trees� i�e�� the smallest path�closed set of trees containing X� A
regular setX is path�closed if it is recognized by a deterministic top�down tree automaton �����
If the constraint in this class is satis�able� the greatest solution always exists� �This would
not be true if we added the empty set to the interpretation domain� take f�x� y � ��

We now de�ne the algorithm for solving path�closed set constraints� In a �rst step� the
constraints of the form f�x�� � � � � xn � � with n
 � are replaced by x� � f����� ��� � � ��xn �

f���n���� In a second step� the satis�ability of the obtained constraint is tested� This step uses
our previous algorithm modi�ed as follows� We apply the rule

�

i

f��ui � f�
�

i

ui��� � � � �
�

i

ui�n

for function symbols of arity n� Thus we obtain always a deterministic top�down tree au�
tomata� If the value of a variable is determined to be the empty set� then the algorithm
results �unsatis�able��

The correctness of the algorithm follows from the fact that for any sequence S��� � � � � Smn

of non�empty sets it holds that PC�
Sm
i�� f�Si�� � � � � Sin � PC�f�

Sm
i�� Si�� � � � �

Sm
i�� Sin�

and from the following lemma�

Lemma � In the interpretation over path�closed sets de�ned above� the formula f�x�� � � � � xn
� � and the formula x� � f����� �� � � � � � xn � f���n��� are equivalent�

�The lower bound requires that the signature contains at least two function symbols� one of them having
arity �
�

��

Proof� For the one direction� we assume ��f�x�� � � � � xn � ���� We prove that for
any i � �� � � � � n� ��xi � ��f���i� ��� Take any tree ti
 ��xi� We need to �nd trees

t�� � � � � ti��� ti��� � � � � tn such that f�t�� � � � � tn
 ���� This is trivial from the non�emptiness
of ��x�� � � � � ��xn�

For the other direction� we assume ��xi � ��f���i� �� for all i� We prove ��f�x�� � � � � xn �

PC����� Take any f�t�� � � � � tn
 ��f�x�� � � � � xn� We know that ti
 ��xi� so ti

��f���i� ��� By the de�nition of projection� there exist trees t�i � � � � � t

i��
i � ti��i � � � � � tni for all i

such that f�t�i � � � � � ti� � � � � t
n
i
 ���� Then� f�t�� � � � � tn
 PC���� holds� �

Theorem 	 The satis�ability problem of path�closed set constraints is DEXPTIME�complete�

Proof� We have shown the upper bound� The lower bound follows from Seidl�s character�
ization of the problem of the emptiness of the intersection for deterministic top�down tree
automata �

�� �

	 Conclusion

We have de�ned a class of set constraints which arises in program analysis and error diagnosis�
and we have given the complexity�theoretic characterization of its constraint�solving problem�
We have applied our techniques also to the already existing class of path�closed set constraints
and characterized its complexity too�

We now need to re�ne the abstract �xpoint strategy of our algorithm in order to im�
prove its practical e$ciency� In succession to the technical report ��� on which this paper is
based� Devienne� Talbot and Tison ��� have already given a strategy for our algorithm which
can achieve an exponential speedup� Unfortunately� their setup relies on bottom�up tree au�
tomata �in bit�vector representation and thus� as the authors point out� applies to the case
of �nite trees only� Our algorithm uses top�down tree automata and accounts for both cases
�where� again� the case of in�nite trees is the only relevant one for analyzing the operational
semantics�

Kozen has given an equational axiomatization of the algebra of sets of trees in ����� It
would be useful to modify this axiomatization in order to account for the projection operator
and thus �x the algebraic laws underlying our algorithm�

To our knowledge� this is the �rst time that automata over in�nite trees have been used
to represent solutions of set constraints� The represented sets of in�nite trees appear in
the ��level in the hierarchy of the �xpoint calculus of Niwi%nski �� �� The essential di�erence
between the �xpoint expressions on the ��level and our set constraints formalisms seems to be
the projection operator� for the addition of intersection to the �xpoint expressions see ���� The
question arises whether the formalism of set constraints can be extended to have solutions in
all levels� i�e�� to be able to express all Rabin�recognizable sets� This is related to the addition
of �xpoint operators as in ���� �there� however� not over in�nite trees but arbitrary �rst�order
domains�

�The complexity of the satis�ability test does not change if we add the empty set to the interpretation
domain� Applying the equivalence�

f�x�� � � � � xn� � � � �x� � �� � � � � � �xn � �� � �x� 	� � � � � � � xn 	� � � f�x�� � � � � xn� � ��

to all constraints of the form f�x�� � � � � xn� � � gives an exponential number of constraints� each of which can
be solved in exponential time� thus� the whole algorithm is single exponential�

�

Appendix

A Automaton constraints and automata

A ��nite non�deterministic top�down tree automaton is a tuple A � h��� Q� �� qsfinit� Q�i
consisting of its �nite alphabet �� � �� �nite set of states Q� �non�deterministic transition
function � � Q��� � P�Q �where Q stands for the set of all tuples over Q� initial state qsfinit
and the set Q� of all�accept states� The tree automaton A accepts a tree t �or� t lies in the
language L�A recognized by A i� there exists a run of A on t� this acceptance condition
works for �nite as well as for in�nite trees� In the case of in�nite trees� the automaton
corresponds to a B"uchi tree automaton where all states are �nal states� The emptiness of
such an automaton can be tested in polynomial time �
��� A run of A on the tree t assigns
to the root the initial state and to each node of t a state q such that� if t is labeled with the
function symbol f
 �� of arity k� then the states assigned to the k successor nodes form a
tuple that lies in the set ���q� f� If the label of the node of t is a constant symbol� then the
set ���q� f must contain the empty tuple� If the state assigned to the node is an all�accept
state� q
 Q�� then the successor nodes are assigned any states �whether the node label f
lies in the alphabet � or not�

Given an automaton constraint �� we �rst de�ne the family of automata A��q �one for
each variable q
 q�Var� all with the same transition table �� and then show that it recognizes
exactly the greatest solution of ��

De�nition �� �A��q� The automaton corresponding to the automaton constraint � and
the variable q�
 q�Var�� is the tuple A��q� � h����Var��� �� � q�i where

� the alphabet is the set ��� of function symbols occurring in ��

� the states are the variables q occurring in ��

� the set ���q� f� i�e�� the transition function �� applied on a state q and a function
symbol f � is

� the set f�qj j fj � fg if q �
S
j fj��qj is a conjunct in � �which is then unique�

� the empty set � if q � � is a conjunct in ��

� the initial state is q��

� the all�accept states are the unbounded variables in ��

If the variable q�
 q�Var does not occur at all in �� then A��q� � h�� fq�g� �� q�� fq�gi �an
automaton accepting T��

It is clear that L�A��q is the empty set if q � � is in � and the set T� of all trees if q is
unbounded in �� More generally� the statement below holds�

Observation � The valuation � � q �� L�A��q is the greatest solution of the automaton
constraint ��

��

Proof� We will �rst show that any solution � of � is smaller than the valuation �� We
extend � to a mapping over all states of the automata by setting ��� � T�� We will show
that ��q � ��q for all states q� If ��q is empty� then the inclusion is trivially satis�ed�
otherwise� take any tree t
 ��q� By induction of the depth of the positions p in t� we will
construct a run of A��q on t that satis�es the following invariant� If A��q is in state q� at
position p� then the subtree tjp of t rooted at p belongs to ��q��

For the root position� the initial state is q and t
 ��q� Let A��q be in state q� at position
p such that tjp
 ��q�� If tjp is a tree of the form f�t�� � � � � tn� then we will continue the
construction of the run at the positions p��� � � � � p�n� If q� is � or an unbounded variable in ��
then the automaton goes to the state � in all positions p��� � � � � p�n� Since A��� recognizes
the set T� of all trees� our invariant is satis�ed� Now suppose q� is not unbounded� Since � is a
solution� on the right�hand side of the inclusion constraining q in � must occur an expression
of the form f�q�� � � � � qn� with tjp
 ��f�q�� � � � � qn� that is� ti
 ��qi for i � �� � � � � n� But
then� by the de�nition of A��q� �q�� � � � � qn
 ���q

�� f� By taking this transition we satisfy
the invariant and are thus able to extend the de�nition of the run to all positions in t� Hence�
t
 ��q�

For the other direction of the proof� we will show that � satis�es every inclusion q �
E in �� Again� if L�A��q is empty� nothing is to show� otherwise� we take an element
t � f�t�� � � � � tn from L�A��q� By the de�nition of L�A��q� there exists a run of A��q
on t� starting from q� Let �q� f� q�� � � � � qn be the �rst transition used in this run� By the
de�nition of a run� there are runs on ti starting from qi� and� hence� ti
 L�A��qi� That
is� t
 f�L�A��q�� � � � �L�A

��qn � f���q�� � � � � ��qn� By the de�nition of A��q� the
expression E is of the form E � f�q�� � � � � qn �E�� Therefore� t
 ��E� �

References

��� A
 Aiken
 Set constraints Results� applications and future directions
 In Proceedings of the
Workshop on Principles and Practice of Constraint Programming� LNCS ���� pages �������

Springer�Verlag� ����

��� A
 Arnold and M
 Nivat
 Formal computations of non deterministic recursive program schemes

Mathematical Systems Theory� ���������� ����

��� A
 Arnold and D
 Niwi�nski
 Fixed point characterization of weak monadic logic de	nable sets of
trees
 In M
 Nivat and A
 Podelski� editors� Tree Automata and Languages� pages �������
 North
Holland� ����

��� L
 Bachmair� H
 Ganzinger� and U
 Waldmann
 Set constraints are the monadic class
 In Eighth
Annual IEEE Symposium on Logic in Computer Science� pages ������ ����

��� W
 Charatonik and L
 Pacholski
 Set constraints with projections are in NEXPTIME
 In Pro�
ceedings of the ��th Symposium on Foundations of Computer Science� pages �������� ����

��� W
 Charatonik and A
 Podelski
 Set constraints for greatest models
 Techni�
cal Report MPI�I���������� Max�Planck�Institut f�ur Informatik� April ����
 www
mpi�
sb
mpg
de��podelski�papers�greatest
html

��� W
 Charatonik and A
 Podelski
 Set constraints with intersection
 In G
 Winskel� editor� Twelfth
Annual IEEE Symposium on Logic in Computer Science �LICS�� pages �������
 IEEE� June
����

��� P
 Devienne� J
�M
 Talbot� and S
 Tison
 Solving classes of set constraints with tree automata

Technical Report IT����� Laboratoire d�Informatique Fondamentale de Lille� May ����

�	

��� T
 Fr�uhwirth� E
 Shapiro� M
 Vardi� and E
 Yardeni
 Logic programs as types for logic programs

In Sixth Annual IEEE Symposium on Logic in Computer Science� pages �������� July ����

���� F
 G�ecseg and M
 Steinby
 Tree Automata
 Akademiai Kiado� ����

���� N
 Heintze and J
 Ja�ar
 A decision procedure for a class of set constraints �extended abstract�

In Fifth Annual IEEE Symposium on Logic in Computer Science� pages ������ ����

���� N
 Heintze and J
 Ja�ar
 A 	nite presentation theorem for approximating logic programs
 In
Seventeenth Annual ACM Symposium on Principles of Programming Languages� pages ��������
January ����

���� N
 Heintze and J
 Ja�ar
 Semantic types for logic programs
 In F
 Pfenning� editor� Types in
Logic Programming� pages �������
 MIT Press� ����

���� N
 Heintze and J
 Ja�ar
 Set constraints and set�based analysis
 In Proceedings of the Workshop on
Principles and Practice of Constraint Programming� LNCS ���� pages �������
 Springer�Verlag�
����

���� D
 Kozen
 Logical aspects of set constraints
 In ���� Conference on Computer Science Logic�
LNCS ���� pages �������
 Springer�Verlag� Sept
 ����

���� J
 W
 Lloyd
 Foundations of Logic Programming
 Symbolic Computation
 Springer�Verlag� Berlin�
Germany� second� extended edition� ����

���� D
 A
 McAllester� R
 Givan� C
 Witty� and D
 Kozen
 Tarskian set constraints
 In Proceedings�
��th Annual IEEE Symposium on Logic in Computer Science� pages �������� New Brunswick�
New Jersey� July ����
 IEEE Computer Society Press

���� P
 Mishra
 Towards a theory of types in Prolog
 In IEEE International Symposium on Logic
Programming� pages �������� ����

���� D
 Niwi�nski
 On 	xed�point clones
 In L
 Kott� editor� Proceedings of the ��th International
Conference on Automata� Languages and Programming� volume ��� of Lecture Notes in Computer
Science� pages �������
 Springer�Verlag� ����

���� L
 Pacholski and A
 Podelski
 Set constraints � a pearl in research on constraints
 In G
 Smolka�
editor� Proceedings of the Third International Conference on Principles and Practice of Constraint
Programming � CP�	� volume ���� of Springer LNCS� Berlin� Germany� October ����
 Springer�
Verlag

���� A
 Podelski� W
 Charatonik� and M
 M�uller
 Set�based error diagnosis of concurrent constraint
programs
 submitted for publication� ����

���� H
 Seidl
 Haskell overloading is DEXPTIME�complete
 Information Processing Letters� ��������
����

���� W
 Thomas
 Handbook of Theoretical Computer Science� volume B� chapter Automata on In	nite
Objects� pages �������
 Elsevier� ����

���� M
 Vardi and P
 Wolper
 Automata�theoretic techniques for modal logics of programs
 Journal
of Computer and System Sciences� ��� ����

��

