
Liveness and Safety in Concurrent Constraint Programs�

Andreas Podelski

Max�Planck�Institut f�ur Informatik

Im Stadtwald� D������ Saarbr�ucken

podelski	mpi�sb
mpg
de

� Temporal operators

In this section we recall the standard de�nitions of temporal operators in the notation of
Clarke�s CTL ���� The operators are used to specify liveness properties ��something good
will �nally happen	
 and safety properties ��nothing bad will happen	
� In non�deterministic
systems one has to make precise whether the speci�cation refers to some or to all execution
sequences starting from a given state�

Let �S�T 
 be a transition system� i�e�� a set S of states together with a �non�deterministic

transition function T 
 S � P�S
� i�e�� a mapping from S to the powerset of S� Given
a property of states� i�e�� a set Prop � S� we can de�ne a new set of states satisfying a
CTL�style temporal property in one of the following ways�

EF�Prop
 � lfp��X� Prop � T ���X



EG�Prop
 � gfp��X� Prop � T ���X



AF�Prop
 � S � EG�S � Prop


AG�Prop
 � S � EF�S � Prop


Here� EF�Prop
 ��exists �nally Prop	
 denotes the set of all states s � S for which there exists
an execution starting in s and reaching a state s� in Prop� i�e�� there exists a sequence of states
s � s�� � � � � sn � s� such that si � T �si��
 for i � �� � � � � n�

EF�Prop
 �
�

i��

�T ��
i�Prop


Similarly� EG�Prop
 ��exists globally Prop	
 denotes the set of all states s � S for which there
exists an execution starting in s such that all reached states lie in Prop� i�e�� a �necessarily
in�nite
 sequence of states s � s�� s�� s�� � � � � Prop such that si � T �si��
 for i � �� � � � � n�

EG�Prop
 �
�

i��

�T ��
i�Prop


The meaning of the other two sets is obtained in the analogous way by referring to all execu�
tions starting in the states they contain�

� Constraints

We assume a constraint system consisting of a class L of constraints �� ��� �� � � � � i�e�� a
class of �rst�order formulas over a given signature � which is closed under conjunction and
existential quanti�cation� We also assume a structure D� i�e�� a domain D of values together

�This is a note about preliminary results
 Comments are solicited
 Last change� February ��� �

�

�



with an interpretation of the function and relation symbols occurring in �� A valuation is a
mapping � 
 Var� D from the given in�nite set of variables Var to the domain D�

The cc programming language Oz ��� uses the constraint system over in�nite trees� Here
the constraints are equalities between variables and terms over a given signature � of function
symbols� We may restrict ourselves to equalities of the form x � y or x � f��u
� An in�nite
tree is de�ned as usual� One may formalize an in�nite tree as a partial function from the
free monoid of strings over natural numbers �a string designates a node by a path
 to �� its
domain must contain the root node �designated by the empty string �
 and� with every node
p� the nodes p��� � � � � p�k where k � � is the arity of the function symbol f assigned to p� The
interpretation of the function symbol f is the function f that contructs a new tree� That is� if
t�� � � � � tk are trees� then t � f�t�� � � � � tk
 is given by t��
 � f and t�i�p
 � ti�p
 for all paths p�
Note that the satis�ability notions of contraints over rational trees �which are employed in
Prolog�II� for example ���
 and over in�nite trees are equivalent �even their �rst�order theories
are equivalent ���
� The di�erence lies in the satis�ability of in�nite sets of constraints and�
thus� appears only when in�nite executions are considered�

The following property of constraint systems has already been considered by Palmgren ����
who proved that it is a su�cient condition for the canonicity of constraint logic programs�
The property is relevant for negation as failure ��� ��� it says that the greatest �xpoint of the
TP �operator is obtained after omega�many iterations�

De�nition � �Saturation� A constraint system has the saturation property if a countable
set � of constraints is satis�able already when every �nite subset of � is satis�able� That is�
for all constraints �i� i � �� the following holds�

f�i j i 	 ng satis�able for all n �
 f�i j i � �g satis�able

Proposition � ����� The constraint system of in�nite trees has the saturation property�

Proof� Our proof is by the observation that the space of valuations over in�nite trees is
compact and that the solutions of equations over in�nite trees are closed� �

Other examples of constraint systems with the saturation property are linear equations
over the reals as in CLP�R
 ��� and �nite domain constraints� The constraint systems over
�nite trees and over rational trees do not have the saturation property� Take the sets fx �
f i�y
 j i 	 ng as a counterexample for the �rst case� and the sets fx � g�f i�a
� f i�y

 j i 	 ng
for the second� Palmgren ��� has given a construction for the conservative extension of any
constraint system to one with the saturation property� conservative here means that the
satis�ability notion for �nite sets of constraints is preserved�

� cc
� programs

We will next de�ne the syntax of cc� programs and their interleaving semantics in terms of
transition systems� Our class of programs is a subclass of concurrent constraint programs ����
In Section ��� we will see in what sense temporal properties of a cc program are approximated
in terms of the corresponding cc� program� Note that our interleaving semantics coincides
with the abstract operational semantics usually given to constraint logic programs �with a non�
deterministic selection function
 ���� the correctness of such programs is� however� speci�ed in
terms of an input�output relation� and non�terminating executions are considered erroneous�

A cc� program P consists of the de�nitions of procedures p � Proc �also called �processes	
or �predicates	
 by an application of the non�deterministic choice operator ��	 to n � � state�
ments� Each of these statements is the parallel composition ��	 of a constraint �i �standing
for the corresponding �tell	 operation
 and the parallel composition of other procedure calls

�



��process invocations	
� We leave the quanti�ers �existential quanti�ers for the statements�
universal closure of the equivalences
 implicit for better readability� As usual� when we apply
a procedure p��y
� we assume consisting ��renaming of the de�nition of p according to the
actual parameters �y �and absence of variable capturing
�

P 

�

p�Proc

p��x
�
�

i������n

��i �
�

j�������mi

pij��yij



We now de�ne the transition systems that are induced by cc� programs� A state s is a pair
consisting of the parallel composition of procedure calls and of the constraint store �an always

satis�able constraint
� we also have an error state err�

S � fh
�

i�������n

pi��xi
� �i j n � �� � is satis�ableg � ferrg

We identify states modulo the AC��laws for parallel composition of procedure calls in the �rst
component and modulo logical equivalence of the constraint stores in the second component�
We use the same symbol � also for the logical �and� composition of constraints� in both cases�
true is the neutral element� it corresponds either to the empty parallel composition or to the
empty conjunction� If the �rst component of the state s is true then we call s a terminal state�

The non�deterministic transition function TP �we note the transition relation ��TP 
 of
the system induced by the program P is de�ned as follows � Let p��x
 be de�ned as above by
the choice of n statements� Let s be a state in which the procedure is called� i�e�� the �rst
component of s can be written in the from p��x
�E� Let � be the constraint store of s� Then�
for any i � �� � � � � n such that ���i is satis�able� there is a non�deterministic transition from
s of the form


hp��x
 �E��i ��TP h
�

j�������mi

pij��yij
 �E�� � �ii�

If no such transition exists for that procedure p� then there is a transition from s into the
error state err� If s is a terminal state� then there is a transition from s to itself�

htrue� �i ��TP htrue� �i

The reason for adding a loop to terminal states is purely formal� Our de�nition of EG does
not formalize safety properties of �nite execution sequences�

As is usual with concurrent systems� we need a notion of fairness� Most correctness proofs
of concurrent systems rely on a fairness assumption ���� The fairness notion of concurrent
constraint systems �see ���
 is intuitive and simple� We take the identical notion for cc�

systems�

De�nition � �Fairness� An execution sequence s�� s�� s�� � � � of a cc� transition system is
fair if for every state si� every procedure call p��x
 appearing in si will be applied �nally �i�e��
for some state si�k in the execution sequence
�

The successor state after the application of p��x
 is possibly the error state err� Whereas the
de�nition of the temporal operators is independent of err and the transitions into err� the
de�nition of fairness does require it� Note that the error state err corresponds to the notion
of failure in the operational semantics of constraint logic programs ���� there� however� failure
is part of the control strategy with backtracking� �Obviously� there is no backtracking in the
execution of concurrent processes� cc programming languages such as AKL ��� and Oz ���
accomodate search through local computation spaces and situated simpli�cation ����


�



� Assertions

The following schema for specifying state properties is inspired by the abstract debugging
framework for imperative programming languages by Bourdoncle ���� where �intermittent	
or �invariant	 assertions are attached to control points and su�cient conditions for their
violations are derived by abstract interpretation� The di�culties in transferring it to concur�
rent constraint programming languages lie in the facts that ��
 several �in fact� unboundedly
many
 control points may be reached concurrently and ��
 in general� it is very hard to com�
pute tell��

� � the inverse of the operation that adds a conjunct � to a constraint store� We
overcome the �rst di�culty by adapting the approach of Lamport described in ���� which
refers to Ashcroft�s assertion framework for concurrent programs� We overcome the second
di�culty by de�ning a setup where we need to apply tell��

� only to sets of states of a restricted
form�

The idea is to annotate procedures p with logical formulas �p� An annotation � is thus a
function

� 
 p � Proc� �p

from procedures p � Proc to assertions �p� Given a procedure call p��y
� we obtain the
appropriate assertion �p��y
 by corresponding renaming of the free variables in �� We observe
that an annotation � 
 p��x
 � Proc� �p��x
 de�nes a set of facts p� �d
 �where d�� � � � � dn � D
�
namely fp� �d
 j D� ���x �� �d� j� �p��x
g� Starting from this observation� we make our notion of
assertions and annotations formally formally precise�

De�nition 	 �Annotation� An annotation � is a set of facts� i�e�� a subset of BD �
fp� �d
 j p � Proc� �d � �Dg� The annotation � de�nes the assertion �p��x
 for the procedure call
p��x
 by


�p��x
 
 p��x
 � ��

A state s � hp��x
� �i with a single procedure call p��y
 satis�es the assertion of � if � is
satis�able in conjunction with �p��y
� Given a state h

V
i�������n pi��xi
� �i with several procedure

calls� we will require something slightly stronger than the satisfaction of the assertions of �
by each state hpi��xi
� �i�

De�nition 
 �Satisfaction of assertions� The set Prop��
 of states satisfying the asser�
tions �p of the annotation � is de�ned by


Prop��
 � fh
�

i�������n

pi��xi
� �i j � �
�

i�������n

�pi��xi
 is satis�ableg�

We say that a state satis�es the assertions given by � intermittently if it lies in the set
EF�Prop��

� and that it satis�es the assertions given by � invariantly if it lies in the set
EG�Prop��

�

If the assertions are used to specify the set of correct states in terms of the liveness property
EF�Prop
� we call them intermittent assertions� If the assertions are used to specify the set of
correct states in terms of the safety property EG�Prop
� we call them invariant assertions� The
default intermittent assertion for a predicate p �without an explicit annotation
 is �p � true�
The default intermittent assertion is �p � false �

Two important special cases of annotations are �false � � and �true � BD� which corre�
spond to the mappings �false 
 p � Proc �� false and �true 
 p � Proc �� true of all predicates
to the Boolean constants false and true� respectively� �false de�nes the strongest assertions�
The states satisfying the strongest assertions are exactly the terminal states�

Prop��false
 � fhtrue � �i j � is satis�ableg

The strongest assertions are important for their use as intermittent assertions�

�



Observation � EF�Prop��false

 is the set of all states for which there exists an execution
reaching a terminal state�

�true de�nes the weakest assertions� The states satisfying the weakest assertions are exactly
the non�error states�

Prop��true
 � fhE��i j � is satis�ableg

The weakest assertions are important for their use as invariant assertions�

Observation � EG�Prop��true

 is the set of all states for which there exists an in�nite
execution �i�e�� an execution which does not go into the error state err
� By duality� AF�ferrg

is the set of all states such that all executions end with the error state�

If we transfer the above observations to the setting of constraint logic programming� we
obtain the characterizations of the success set of a CLP program and of its �nite�failure set
in terms of temporal properties� Success is a special case of a liveness property� Finite failure
is the dual of a special case of a safety property� This view seems to be new�

If we extend the syntax of programs to include assertions �p� we may restrict ourselves to
the two special cases of the annotations �false and �true without loosing generality� Namely�
EF�Prop��

 with respect to the program P is equal to EF�Prop��false

 with respect to the
program P �Prop below� We obtain this program from P by adding the assertion �p��x
 �which
stands for
 p��x
 � �

 as a disjunct to the choice de�ning the procedure p��x
�

P � Prop��
 

�

p�Proc

p��xp
�
�

i������n

��i �
�

j�������mi

pij��yij

 � �p��x


In the analogous way� EG�Prop��

 with respect to the program P is equal to EG�Prop��true

with respect to the program P � Prop below� We obtain this program from P by adding by
adding the assertion �p��x
 as a conjunct to each statement in the choice de�ning the procedure
p��x
�

P � Prop��
 

�

p�Proc

p��xp
�
�

i������n

��i �
�

j�������mi

pij��yij
 � �p��x



Note that we did not put any restriction on the annotations �� a priori� the sets of values
de�ned by an assertion may not even be recursive� Thus� it may be misleading to refer to
P � Prop and P � Prop as programs�

� Weakest pre�conditions

The function tell� applied on a state s yields the set of successor states of s �a singleton or
the empty set
 under the operation that adds the constraint � as a conjunct to the constraint
store� The following observation has motivated our assertion framework�

tell��� �Prop��

 � fh
�

i�������n

pi��xi
� �i j
�

i�������n

�pi��xi� � � � � is satis�ableg

Given the annotation � 
 p � Proc �� ��p and the constraint �� we de�ne the annotation ���

as the mapping � � � 
 p � Proc �� ��p where ��p � � � �p� Then� a more concise formulation
of the observation is


tell��� �Prop��

 � Prop�� � �
�

We will next investigate the function T ��
P and the �xpoints of the functions �X� Prop�T ���X


and �X� Prop � T ���X
�

�



We �rst de�ne the non�deterministic transition function �TP where all procedure calls p��xk

in the parallel composition of a state are applied simultaneously in one step� We assume that
the predicates pk are de�ned by


pk��xk
�
�

ik

��ik �
�

j

pikj��yikj

�

Then the non�deterministic transition relation �� 	TP
is given by �for any choice of indices ik



h
�

k

pk��xk
� �i �� 	TP
h
�

k

�

j

pikj��yikj
� � �
�

k

�iki�

Proposition � Provided the execution sequences are fair� the temporal properties wrt� to
the transition system TP may be de�ned wrt� the transition function �TP � That is� for all sets
of states Prop


EF�Prop
 � lfp��X� Prop � �T ��
P �X



EG�Prop
 � gfp��X� Prop � �T ��
P �X



Proof� The constraint store is growing monotonically during one execution sequence� Thus�
the �possibly in�nite
 conjunctions of the constraints added to the constraint stores added
during two execution sequences are logically equivalent if the two execution sequences di�er
only in the order of procedure calls �but not in the choices of the disjuncts composed by
the choice operator
� The di�erence between such two execution sequences stems from the
non�determinism due to the interleaving semantics �as opposed to the indeterminism� which
is due to the choice operator and which generally yields non�con�uent transition sequences
�
Eliminating the non�determinism amounts to using the true�concurrency semantics of Mon�
tanari and Rossi ���� In the special case of cc� programs� this semantics can be described very
simply� i�e�� by the transition function �TP � �

We recall that the logical consequence operator TP maps a set X of ground facts to the
set of their immediate consequences under the programm P � i�e�� if X � BD � fp� �d
 j p �
Proc� �d � �Dg� then

TP �X
 � fp� �d
 j �� 
 Var� D �i � f�� � � � � ng 
 ���xip
 �
�d�

D� � j� �i�

pij����yij

 � Xg

where the set comprehension ranges also over all procedures p � Proc de�ned by the pro�
gram P �

Since an annotation � is a set of ground facts� we may apply TP to an annotation �� We
then obtain an annotation that characterizes the predecessor relation in the following sense�

Proposition 	 A state is a predecessor of a state satisfying the assertions of the annotation
� if and only if it satis�es the assertions of the annotation TP ��
� That is


�T ��
P �Prop��

 � Prop�TP ��

�

Proof� Given the annotation � 
 p � Proc �� �p� the inverse of �TP is de�ned as follows�

�T ��
P �Prop��

 � fh

�

k

pk��xk
� �i j for all k exists ik such that

� �
V
k��ik �

V
j �pikj ��yikj

 is satis�ableg

Thus� �T ��
P �Prop��

 � Prop��� 
 p � Proc �� ��p
 where

��p��xp
 

W
i �i �

V
j �pij ��yikj



 p��x
 � TP �fp� �d
 j �p� �d
g



 p��x
 � TP ��
�

�

�



Theorem � �Liveness� A state satis�es the assertions given by the annotation � intermit�
tently if and only if it satis�es the assertion given by the closure of the TP operator applied
to �� That is


EF�Prop��

 � Prop�lfp��X��� � TP �X



�

Proof� In the chain of equalities below� we use Proposition � for ��
� Proposition � for ��
� the
fact that an �in�nite
 disjunction of formulas is satis�able if and only if one of these formulas
is satis�able for ��
� and the fact that the TP operator is continuous for ��
�

EF�Prop��

 �
�

i��

� �T ��
P 
i�Prop��

 ��


�
�

i��

Prop�T i
P ��

 ��


� Prop�
�

i��

T i
P ��

 ��


� Prop�lfp��X��� � TP �X



 ��


�

We formulate the characterization above for the special case of the annotation �false �

EF�Prop��false
 � Prop�lfp�TP 



This yields the classical characterization of the success set of a CLP program P in terms of
the least model lm�P
 of the logical formula corresponding to the program P �lm�P
 is equal
to the least �xpoint of the TP operator
� In order to see this we only have to note that the
success set is equal to EF�Prop��false

 and unfold the de�nition of Prop� Namely� a state
hp��x
� �i has a terminating execution sequence if and only if the formula � � p��x
 � lfp�TP 

has a solution�

The above theorem states the weakest pre�condition of a liveness property speci�ed by
assertions in terms of new assertions� In the special case of the �strongest assertions	 false

�which specify termination
� the new assertions are de�ned by the least model of the program
formula�

We will next study the case of safety properties� This case is not analogous to the previous
one for the following reason� The satis�ability of the constraint � with all �nite conjunctions
of assertions ���� � ���n is generally not equivalent to the satis�ability of the constraint � with
the in�nite conjunction of assertions �� � �� � � � �� We thus need an additional requirement�

Theorem � �Safety� Provided the saturation property holds for the underlying constraint
system� we have the following characterization with respect to fair execution sequences
 A
state satis�es the assertions given by the annotation � invariantly if and only if it satis�es the
assertion given by the downward closure of the TP operator restricted to �� That is


EG�Prop��

 � Prop�gfp��X��� � TP �X



�

Proof� In the chain of equalities below� we use Proposition � for ��
� Proposition � for ��
�
the saturation property for � 
� and the fact from ��� that� given the saturation property� the
TP operator reaches its greatest �xpoint after omega many iterations for �!
�

EG�Prop��

 �
�

i��

� �T ��
P 
i�Prop��

 ��


�
�

i��

Prop�T i
P ��

 ��


� Prop�
�

i��

T i
P ��

 � 


� Prop�gfp��X��� � TP �X



 �!


 



�

We formulate the characterization above for the special case of the annotation �true �

EF�Prop��true
 � Prop�gfp�TP 



This characterization yields a result which seems to be new in the theory of constraint logic
programming� We obtain the characterization of the set of all states for which in�nite execu�
tions exist �and� by the dual� the characterization of the ��nite�failure	 set of a CLP program
P 
 in terms of the greatest model of the program formula P �which is equal to the greatest
�xpoint of the TP operator
� Note that in�nite executions subsume those reaching a terminal
state in our formalization of transition systems and of temporal properties �which adds a loop
to each terminal states
�

Corollary � Provided the saturation property holds for the underlying constraint system� a
state hp��x
� �i has an in�nite execution sequence ��does not �nitely fail	
 if and only if the
formula � � p��x
 � gfp�TP 
 has a solution� �

Theorem � states the weakest pre�condition of a safety property speci�ed by assertions in
terms of new assertions� In the special case of the �weakest assertions	 true �which specify
the absence of a systems failure
� the new assertions are de�ned by the greatest model of the
program formula�

!


