Liveness and Safety in Concurrent Constraint Programs®

Andreas Podelski
Max-Planck-Institut fiir Informatik
Im Stadtwald, D-66123 Saarbriicken

podelski@mpi-sb.mpg.de

1 Temporal operators

In this section we recall the standard definitions of temporal operators in the notation of
Clarke’s CTL [?]. The operators are used to specify liveness properties (“something good
will finally happen”) and safety properties (“nothing bad will happen”). In non-deterministic
systems one has to make precise whether the specification refers to some or to all execution
sequences starting from a given state.

Let (S, T) be a transition system, i.e., a set S of states together with a (non-deterministic)
transition function 7 : § — P(S), i.e., a mapping from S to the powerset of S. Given
a property of states, i.e., a set Prop C S, we can define a new set of states satisfying a
CTL-style temporal property in one of the following ways.

EF(Prop) = lfp(AX. Prop UT (X))
EG(Prop) = fp(AX Prop N T~HX))
AF(Prop) = EG(S — Prop)
AG(Prop) = S — EF(S — Prop)

Here, EF(Prop) (“exists finally Prop”) denotes the set of all states s € S for which there exists
an execution starting in s and reaching a state s’ in Prop, i.e., there exists a sequence of states

$=80,...,8, =& such that s; € T(s;—1) fori=1,...,n.
EF(Prop) = U(Tﬁl)i(Prop)
i>0

Similarly, EG(Prop) (“exists globally Prop”) denotes the set of all states s € S for which there
exists an execution starting in s such that all reached states lie in Prop, i.e., a (necessarily
infinite) sequence of states s = sg, 51, S2,... € Prop such that s; € T(s;—1) fori=1,...,n

EG(Prop) = ﬂ(T_l)i(Prop)

i>0

The meaning of the other two sets is obtained in the analogous way by referring to all execu-
tions starting in the states they contain.

2 Constraints

We assume a constraint system consisting of a class £ of constraints ¢, ¢', 9, ..., i.e., a
class of first-order formulas over a given signature > which is closed under conjunction and
existential quantification. We also assume a structure D, i.e., a domain D of values together

“This is a note about preliminary results. Comments are solicited. Last change: February 25, 1997

with an interpretation of the function and relation symbols occurring in ¥. A valuation is a
mapping « : Var — D from the given infinite set of variables Var to the domain D.

The cc programming language Oz [?] uses the constraint system over infinite trees. Here
the constraints are equalities between variables and terms over a given signature X of function
symbols. We may restrict ourselves to equalities of the form 2 = y or = f(@). An infinite
tree is defined as usual. One may formalize an infinite tree as a partial function from the
free monoid of strings over natural numbers (a string designates a node by a path) to ¥; its
domain must contain the root node (designated by the empty string ¢) and, with every node
p, the nodes p.1,...,p.k where k > 0 is the arity of the function symbol f assigned to p. The
interpretation of the function symbol f is the function f that contructs a new tree. That is, if
t1,...,t are trees, then t = f(t1,...,1x) is given by t(¢) = f and t(i.p) = t;(p) for all paths p.
Note that the satisfiability notions of contraints over rational trees (which are employed in
Prolog-11, for example [?]) and over infinite trees are equivalent (even their first-order theories
are equivalent [?]). The difference lies in the satisfiability of infinite sets of constraints and,
thus, appears only when infinite executions are considered.

The following property of constraint systems has already been considered by Palmgren [?],
who proved that it is a sufficient condition for the canonicity of constraint logic programs.
The property is relevant for negation as failure [?, ?]; it says that the greatest fixpoint of the
Tp-operator is obtained after omega-many iterations.

Definition 1 (Saturation) A constraint system has the saturation property if a countable
set @ of constraints is satisfiable already when every finite subset of @ is satisfiable. That is,
for all constraints ¢;, « > 1, the following holds.

{¢i | i < n} satisfiable for all n = {p; | i > 1} satisfiable
Proposition 1 ([?]) The constraint system of infinite trees has the saturation property.

Proof. Our proof is by the observation that the space of valuations over infinite trees is
compact and that the solutions of equations over infinite trees are closed. O

Other examples of constraint systems with the saturation property are linear equations
over the reals as in CLP(R) [?] and finite domain constraints. The constraint systems over
finite trees and over rational trees do not have the saturation property. Take the sets {z =
fi(y) | i <n} as a counterexample for the first case, and the sets {z = g(f*(a), f'(y)) | i < n}
for the second. Palmgren [?] has given a construction for the conservative extension of any
constraint system to one with the saturation property; conservative here means that the
satisfiability notion for finite sets of constraints is preserved.

3 cc* programs

We will next define the syntax of cc* programs and their interleaving semantics in terms of
transition systems. Our class of programs is a subclass of concurrent constraint programs [?].
In Section 7?7, we will see in what sense temporal properties of a cc program are approximated
in terms of the corresponding cc* program. Note that our interleaving semantics coincides
with the abstract operational semantics usually given to constraint logic programs (with a non-
deterministic selection function) [?]; the correctness of such programs is, however, specified in
terms of an input-output relation, and non-terminating executions are considered erroneous.

A cc* program P consists of the definitions of procedures p € Proc (also called “processes”
or “predicates”) by an application of the non-deterministic choice operator “v” ton > 1 state-
ments. Each of these statements is the parallel composition “A” of a constraint 1; (standing
for the corresponding “tell” operation) and the parallel composition of other procedure calls

(“process invocations”). We leave the quantifiers (existential quantifiers for the statements,
universal closure of the equivalences) implicit for better readability. As usual, when we apply
a procedure p(7), we assume consisting a-renaming of the definition of p according to the
actual parameters y (and absence of variable capturing).

P = /\ p(z) < \/ (i A /\ pij(¥ij))
1,

p€EProc i=1,..n j=1,...m;

We now define the transition systems that are induced by cc* programs. A state s is a pair
consisting of the parallel composition of procedure calls and of the constraint store (an always
satisfiable constraint); we also have an error state err.

S = {{(/\ pi(Z:), ©) | n >0, ¢ is satisfiable} U {err}

i=1,...,n

We identify states modulo the AC1-laws for parallel composition of procedure calls in the first
component and modulo logical equivalence of the constraint stores in the second component.
We use the same symbol A also for the logical ‘and’ composition of constraints; in both cases,
true is the neutral element; it corresponds either to the empty parallel composition or to the
empty conjunction. If the first component of the state s is true then we call s a terminal state.

The non-deterministic transition function 7p (we note the transition relation —7;,) of
the system induced by the program P is defined as follows . Let p(z) be defined as above by
the choice of n statements. Let s be a state in which the procedure is called; i.e., the first
component of s can be written in the from p(Z) A E. Let ¢ be the constraint store of s. Then,
for any 2 = 1,...,n such that ¢ A1; is satisfiable, there is a non-deterministic transition from
s of the form:

p@)ANE,0) —1 (N pi(5i) NE o M),
7j=1,...,m;

If no such transition exists for that procedure p, then there is a transition from s into the
error state err. If s is a terminal state, then there is a transition from s to itself.

(true, o) —7p (true,)

The reason for adding a loop to terminal states is purely formal. Our definition of EG does
not formalize safety properties of finite execution sequences.

As is usual with concurrent systems, we need a notion of fairness. Most correctness proofs
of concurrent systems rely on a fairness assumption [?]. The fairness notion of concurrent
constraint systems (see [?]) is intuitive and simple. We take the identical notion for cc*
systems.

Definition 2 (Fairness) An execution sequence $g, $1,82,... of a cc* transition system is
fair if for every state s;, every procedure call p(z) appearing in s; will be applied finally (i.e.,
for some state s;4j in the execution sequence).

The successor state after the application of p(Z) is possibly the error state err. Whereas the
definition of the temporal operators is independent of err and the transitions into err, the
definition of fairness does require it. Note that the error state err corresponds to the notion
of failure in the operational semantics of constraint logic programs [?]; there, however, failure
is part of the control strategy with backtracking. (Obviously, there is no backtracking in the
execution of concurrent processes; cc programming languages such as AKL [?] and Oz [?]
accomodate search through local computation spaces and situated simplification [?].)

4 Assertions

The following schema for specifying state properties is inspired by the abstract debugging
framework for imperative programming languages by Bourdoncle [?], where “intermittent”
or “invariant” assertions are attached to control points and sufficient conditions for their
violations are derived by abstract interpretation. The difficulties in transferring it to concur-
rent constraint programming languages lie in the facts that (1) several (in fact, unboundedly
many) control points may be reached concurrently and (2) in general, it is very hard to com-
pute tellJ ! the inverse of the operation that adds a conjunct 1 to a constraint store. We
overcome the first difficulty by adapting the approach of Lamport described in [?], which
refers to Ashcroft’s assertion framework for concurrent programs. We overcome the second
difficulty by defining a setup where we need to apply tellJ T only to sets of states of a restricted
form.

The idea is to annotate procedures p with logical formulas 7,. An annotation I' is thus a
function

I':peProc—,

from procedures p € Proc to assertions 7y, Given a procedure call p(y), we obtain the
appropriate assertion 7,() by corresponding renaming of the free variables in . We observe
that an annotation I' : p(z) € Proc — +,(z) defines a set of facts p(d) (where dy,...,d, € D),
namely {p(d) | D, a[Z — d] | v,(Z)}. Starting from this observation, we make our notion of

assertions and annotations formally formally precise.

Definition 3 (Annotation) An annotation I' is a set of facts, i.e., a subset of Bp =
{p(d) | p € Proc, d € D}. The annotation I' defines the assertion +,(Z) for the procedure call
p(z) by:

w(@) = p(z) el

A state s = (p(z),) with a single procedure call p(y) satisfies the assertion of I" if ¢ is
satisfiable in conjunction with v, (7). Given a state (\;,—; _, pi(Z:), ») with several procedure
calls, we will require something slightly stronger than the satisfaction of the assertions of I'
by each state (p;(Z;),).

Definition 4 (Satisfaction of assertions) The set Prop(I") of states satisfying the asser-
tions -y, of the annotation I' is defined by:

Prop(T) = {(A pil@)@) [9A A\ () is satistiable}.

i=1,...,n i=1,...,n

We say that a state satisfies the assertions given by I' intermittently if it lies in the set
EF(Prop(T')), and that it satisfies the assertions given by T' invariantly if it lies in the set
EG(Prop(I")).

If the assertions are used to specify the set of correct states in terms of the liveness property
EF(Prop), we call them intermittent assertions. If the assertions are used to specify the set of
correct states in terms of the safety property EG(Prop), we call them invariant assertions. The
default intermittent assertion for a predicate p (without an explicit annotation) is -y, = true.
The default intermittent assertion is v, = false.

Two important special cases of annotations are I'jys. = ¢ and I'4pye = Bp, which corre-
spond to the mappings [y : p € Proc = false and I'yye : p € Proc = true of all predicates
to the Boolean constants false and true, respectively. I'jq,. defines the strongest assertions.
The states satisfying the strongest assertions are exactly the terminal states.

Prop(I'fuse) = {(true,) | ¢ is satisfiable}

The strongest assertions are important for their use as intermittent assertions.

Observation 1 EF(Prop(I'fys.)) is the set of all states for which there exists an execution
reaching a terminal state.

['yrye defines the weakest assertions. The states satisfying the weakest assertions are exactly
the non-error states.

Prop(Tirue) = {(E,) | ¢ is satisfiable}

The weakest assertions are important for their use as invariant assertions.

Observation 2 EG(Prop(I';m.)) is the set of all states for which there exists an infinite
execution (i.e., an execution which does not go into the error state err). By duality, AF({err})
is the set of all states such that all executions end with the error state.

If we transfer the above observations to the setting of constraint logic programming, we
obtain the characterizations of the success set of a CLP program and of its finite-failure set
in terms of temporal properties. Success is a special case of a liveness property. Finite failure
is the dual of a special case of a safety property. This view seems to be new.

If we extend the syntax of programs to include assertions vy,, we may restrict ourselves to
the two special cases of the annotations I'fy. and I'yye without loosing generality. Namely,
EF(Prop(I")) with respect to the program P is equal to EF(Prop(I'suse)) with respect to the
program PV Prop below. We obtain this program from P by adding the assertion -y, (z) (which
stands for: p(Z) € ")) as a disjunct to the choice defining the procedure p(Z).

PV Prop(l') = /\ p(Zp) < \/ (1/)1'/\. /\ pii(Ti)) vV (Z)

pEProc i=1,..n j=1,...m;

In the analogous way, EG(Prop(I")) with respect to the program P is equal to EG(Prop(I'ye)
with respect to the program P A Prop below. We obtain this program from P by adding by
adding the assertion ,(z) as a conjunct to each statement in the choice defining the procedure

p(Z).
PAProp(T) = A p@) e \/ WA N\ pulTy) A w(E)
pEProc i=1,..n j=1,...m;
Note that we did not put any restriction on the annotations I'; a priori, the sets of values
defined by an assertion may not even be recursive. Thus, it may be misleading to refer to
P V Prop and P A Prop as programs.

5 Weakest pre-conditions

The function tell, applied on a state s yields the set of successor states of s (a singleton or
the empty set) under the operation that adds the constraint ¢ as a conjunct to the constraint
store. The following observation has motivated our assertion framework.

tell&l(Prop(F)) = {{ /\ pi(Zi),) | /\ Yps(z:) N @ A1) is satisfiable}

i=1,...,n i=1,...,n

Given the annotation I' : p € Proc — 'yl’, and the constraint 1, we define the annotation I' A 1)
as the mapping I' A4 : p € Proc = =y, where v, = 1 A y,. Then, a more concise formulation

of the observation is:
telltf(Prop(I‘)) = Prop(I" A ¢).

We will next investigate the function 7, * and the fixpoints of the functions AX. Propu7 ~!(X)
and AX. PropN 7 1(X).

We first define the non-deterministic transition function 7p where all procedure calls p(Z,)
in the parallel composition of a state are applied simultaneously in one step. We assume that
the predicates pj are defined by:

Pe(Tr) < \/ (i, A /_\pikj(@ikj))-
Lk J

Then the non-deterministic transition relation — . is given by (for any choice of indices iy):
(Ape(@r), 0) — 7, (N\ N\Pini@ing) 0 A N\ i,)-
k k J k

Proposition 2 Provided the execution sequences are fair, the temporal properties wrt. to
the transition system 7p may be defined wrt. the transition function 7p. That is, for all sets
of states Prop:

EF(Prop) = Ifp(AX. Prop U T, (X))

EG(Prop) = gfp(AX. Prop N Tp (X))
Proof. The constraint store is growing monotonically during one execution sequence. Thus,
the (possibly infinite) conjunctions of the constraints added to the constraint stores added
during two execution sequences are logically equivalent if the two execution sequences differ
only in the order of procedure calls (but not in the choices of the disjuncts composed by
the choice operator). The difference between such two execution sequences stems from the
non-determinism due to the interleaving semantics (as opposed to the indeterminism, which
is due to the choice operator and which generally yields non-confluent transition sequences).
Eliminating the non-determinism amounts to using the true-concurrency semantics of Mon-
tanari and Rossi [?]. In the special case of cc* programs, this semantics can be described very
simply, i.e., by the transition function Tp. O

We recall that the logical consequence operator Tp maps a set X of ground facts to the

set of their immediate consequences under the programm P; i.e., if X C Bp = {p(d) | p €
Proc, d € D}, then
Tp(X) ={p(d) | 3a:Var > D3ie{l,...,n}: (7)) =d,
D,a = i,
pij(e(yij)) € X}
where the set comprehension ranges also over all procedures p € Proc defined by the pro-
gram P.

Since an annotation I' is a set of ground facts, we may apply Tp to an annotation I'. We
then obtain an annotation that characterizes the predecessor relation in the following sense.

Proposition 3 A state is a predecessor of a state satisfying the assertions of the annotation
[if and only if it satisfies the assertions of the annotation 7p(I"). That is:

Tp ' (Prop(T)) = Prop(Tp(I)).
Proof. Given the annotation I' : p € Proc — vy, the inverse of Tp is defined as follows.
T5 L(Prop(I)) = {(/\pk(ik), p) | for all k exists i such that
k @ A Nk (Wi, AN Vpi,; (Yirj)) i satisfiable}
Thus, 75 ' (Prop(T)) = Prop(I" : p € Proc v,) where

’Y;,)(jp) = Vi¢iAAj7pijEyikj))

= p(z) € Tp({p(d) | 1p(d)})
— p(z) € Tp(D).

Theorem 1 (Liveness) A state satisfies the assertions given by the annotation I' intermit-
tently if and only if it satisfies the assertion given by the closure of the Tp operator applied
to I'. That is:

EF(Prop(I")) = Prop(ifp(AX.(I' UTp(X)))).

Proof. In the chain of equalities below, we use Proposition 2 for (1), Proposition 3 for (2), the
fact that an (infinite) disjunction of formulas is satisfiable if and only if one of these formulas
is satisfiable for (3), and the fact that the T» operator is continuous for (4).

EF(Prop(I') = |J(7p")'(Prop(T)) (1)
i>0
= [JProp(T5(I)) (2)
i>0
— Prop(|J TH(D)) (3)
i>0
= Prop(lfp(AX.(I' U Tr(X)))) (4)
O

We formulate the characterization above for the special case of the annotation I'fyse.

EF(Prop(Tfaise) = Prop(ifp(Tp))

This yields the classical characterization of the success set of a CLP program P in terms of
the least model Im(P) of the logical formula corresponding to the program P (Im(P) is equal
to the least fixpoint of the Tp operator). In order to see this we only have to note that the
success set is equal to EF(Prop(I'fas.)) and unfold the definition of Prop. Namely, a state
(p(Z), p) has a terminating execution sequence if and only if the formula ¢ A p(z) € Ifp(Tp)
has a solution.

The above theorem states the weakest pre-condition of a liveness property specified by
assertions in terms of new assertions. In the special case of the “strongest assertions” false
(which specify termination), the new assertions are defined by the least model of the program
formula.

We will next study the case of safety properties. This case is not analogous to the previous
one for the following reason. The satisfiability of the constraint ¢ with all finite conjunctions
of assertions vy A. .. A7, is generally not equivalent to the satisfiability of the constraint ¢ with
the infinite conjunction of assertions y; A2 A.... We thus need an additional requirement.

Theorem 2 (Safety) Provided the saturation property holds for the underlying constraint
system, we have the following characterization with respect to fair execution sequences: A
state satisfies the assertions given by the annotation I' invariantly if and only if it satisfies the
assertion given by the downward closure of the Tp operator restricted to I'. That is:

EG(Prop(I')) = Prop(gfp(AX.(I' N Tp(X)))).

Proof. 1In the chain of equalities below, we use Proposition 2 for (5), Proposition 3 for (6),
the saturation property for (7), and the fact from [?] that, given the saturation property, the
Tp operator reaches its greatest fixpoint after omega many iterations for (8).

EG(Prop(T')) = [(T5 ") (Prop(T)) (5)
i>0
=) Prop(TH(I")) (6)
i>0
= Prop([) Tp(I) (7)
i>0
= Prop(gfp(AX.(I' N Tp(X)))) (8)

We formulate the characterization above for the special case of the annotation I'ye.

EF(PrOp(Ftrue) = Prop(gfp(TP))

This characterization yields a result which seems to be new in the theory of constraint logic
programming. We obtain the characterization of the set of all states for which infinite execu-
tions exist (and, by the dual, the characterization of the “finite-failure” set of a CLP program
P) in terms of the greatest model of the program formula P (which is equal to the greatest
fixpoint of the Tp operator). Note that infinite executions subsume those reaching a terminal
state in our formalization of transition systems and of temporal properties (which adds a loop
to each terminal states).

Corollary 1 Provided the saturation property holds for the underlying constraint system, a
state (p(Z), p) has an infinite execution sequence (“does not finitely fail”) if and only if the
formula ¢ A p(z) € gfp(Tp) has a solution. O

Theorem 2 states the weakest pre-condition of a safety property specified by assertions in
terms of new assertions. In the special case of the “weakest assertions” ¢rue (which specify
the absence of a systems failure), the new assertions are defined by the greatest model of the
program formula.

