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Abstract. We show how model checking procedures for different kinds
of infinite-state systems can be formalized as a generic constraint-solving
procedure, viz. the saturation under a parametric set of inference rules.
The procedures can be classified by the solved form they are to compute.
This solved form is a recursive (automaton-like) definition of the set of
states satisfying the given temporal property in the case of systems over
stacks or other symbolic data.

1 Introduction

In the large body of work on model checking for infinite-state systems (see e.g.
[2-12,15,17,20, 21, 24-26,31-33]), we can distinguish two basic cases according
to the infinite data domain for the program variables. In the first case, we have
pushdown stacks or other ‘symbolic’ data implemented by pointer structures.
These data are modeled by words or trees, and sets of states are represented by
word automata or tree automata. In the second case, program variables range
over reals or other numeric data, and sets of states are represented by arithmetic
constraints. Accordingly, the respective model checking procedures operate on
automata or on arithmetic constraints. Whereas they are essentially fixpoint
procedures based on the predecessor or the successor operator in the second case,
they seem to require ad-hoc reasoning techniques in the first case. In this paper,
we show how all these procedures can be formalized as one generic constraint-
solving procedure, viz. the saturation under a parametric set of inference rules;
the procedures can be compared by the solved form they are to compute.

We will use constraints ¢ (such as ¢ = y + 1 over the domain of reals or
z = a.y over the domain of words) in order to form Constraints ¢ (such as X =
{z|FyeY:z=y+1}or X ={z |y €Y : z=ay}).' A specification of a
transition system by a guarded-command program, together with a specification
of a temporal property by a modal p-calculus formula, translates effectively to
a Constraint ¢ such that the intended solution of @ is the temporal property
(i.e., the value of a variable X of & is the set of states satisfying the property).
Model checking for the transition system and the temporal property amounts to
solving that Constraint ¢. Solving ¢ means transforming ¢ into an equivalent
Constraint @' in solved form.

In each Constraint solving step, a direct consequence under a logical inference
rule is added as a conjunct to the Constraint (“saturation”). When no more new

! Notation: constraints ¢ are first-order, Constraints & are second-order.



conjuncts can be added, the Constraint is in solved form. This generic model
checking procedure is parametrized by the set of inference rules.

The purpose of the solved form of a Constraint is to exhibit its set of solutions;
technically, this means that known (and algorithmically more or less pleasing)
tests for emptiness and for membership are applicable. (Strictly speaking, the
test of the membership of the initial state of the system in this set is still part
of the model checking procedure.)

We can compare the two cases of ‘symbolic’ vs. numeric data structures by
the two basic cases of solved forms. The solved form is a recursive definition of
sets of states in the first case, and a non-recursive definition (viz. a symbolic
state enumeration) in the second case.

Our uniform definition of model checking and the classification according
to solved forms allows us to contrast the two cases with each other. Model
checking over the reals is ‘harder’ than over the words in the sense that solving a
Constraint @ over the reals means ‘eliminating the recursion’. For example, the
Constraint X = {z | Jy € X : z = y+1}U{0} gets transformed into in its solved
form X = {z | z > 0}; however, the Constraint X = {z | 3y € X : z = a.y}U{e}
is already in solved form (representing the set a* of all words a.a...a including
the empty word €). The first Constraint arises from the CTL formula EF(0) and
the program consisting of the loop with the one instruction x:=x-1, the second
from the CTL formula EF(¢) and the program with pop(a,x).

Our technical setting uses concepts from logic programming. In order to ad-
dress the reader who is not familiar with those concepts, we will first consider
two concrete examples of infinite-state systems and use them to illustrate our
approach (Sections 2 and 3). We then generally characterize the temporal prop-
erty of a system in terms of a solution of a Constraint ¢ (Section 4). In our
formalization of the model checking procedure, the first step in the design of
a concrete procedure is to define the solved form of a Constraint; we give a
generic definition and its two instances corresponding to symbolic and numeric
systems, respectively (Section 5). The second step is to instantiate the parameter
of the generic Constraint-solving procedure, namely the set of inference rules,
for concrete examples of infinite-state systems (Section 6).

2 Finite Automata as Infinite-State Systems

We will rephrase well-known facts about finite automata in order to illustrate
our notions of constraints ¢ and Constraints ¢ and the correspondence between
a specific solution of @ and a temporal property.

The notion of constraints ¢. A finite automaton is given essentially by a finite
edge-labeled directed graph G. Some nodes of the graph G are marked as initial
and some as final. We will write @ = {1,...,n} for its set of nodes and ¥
for its set of edge labels. The graph defines a transition system. The states are
pairs (i, z) consisting of a node ¢ and a word z (i.e. z is an element of the free
monoid X* over the alphabet X'). The edge (i, a, j) from node ¢ to node j labeled
by a defines the following state transitions:



state (i,z) can take a transition to state (j,y) if z = a.y holds.

The formula z = a.y is an example of a constraint ¢ (over the variables z and y).
The constraint is satisfied by words = and y if the first letter of z is a, and y is
obtained from z by removing the first letter.

We note that a finite automaton defines a special case of an infinite-state
transition system where each execution sequence is finite (infinite with self-loops
on (i,e)). This view will be useful when we extend it to pushdown systems in
Section 3.

The notion of Constraints ®@. It is well known that a finite automaton can be
associated with a regular system of equations, which is a conjunction of equations
of the form p; = [eU] U a.p; where the union ranges over all edges (i, a, j) from
node i to node j; the ‘empty word’ € is a member of the union if the node i is
marked final.

A regular system of equations is an example of a Constraint ¢ (over the
variables p1,...,p,). Its variables range over sets of words. Being interested in
the least solution, we can it equivalently as the conjunction of the following
(superset) inclusions:

Di 2 a.q; (fOI’ each edge <Za a’aj>)a
pi D€ (if the node 7 is marked final).

We next introduce a syntactic variant of the inclusion p; O a.q; that makes
explicit the role of constraints:

pi2{zeX|Iye X (z=ay, yep)}

Identifying sets and unary predicates, we write the above inclusion in yet another
syntactic variant, namely as a clause of a constraint data base or constraint logic
program:2

pi(z) + z = a.y, pj(y).

This notation leaves implicit the universal quantification of the variables x and y
for each clause. Thus, the only free variables in the clause above are the set
variables p; and p;. An inclusion of the form p; D € translating the fact that the
node ¢ is marked final can be written as a special case of clause called fact:

pi(z) « z =«¢.

Solutions of Constraints & and Temporal Properties. The correspondence be-
tween the least solution of a regular system of equations and the language rec-
ognized by a finite automaton is well known. If we note [p;] the value of the set
variable p; in the least solution of the regular system (viz. the Constraint @),

2 The close relationship between a clause p(z) + ... and an inclusion p D ... un-
derlines the fact that the “predicate symbols” p in clauses stand for second-order
variables; they range over sets of (tuples of) data values.



then the recognized language is the union of all sets of words [p;] such that the
node 7 is marked initial.

The set [p;] consists of all words accepted by the finite automaton when
starting from the node i. Now, we only need to realize that acceptance is a
special case of a temporal property, namely the reachability of an accepting
state which is of the form (j, ) for a final node j:

x € X* is accepted from node i € Q iff (i,z) —* (j,¢) for a final node j.

We introduce accept as the symbol for the atomic proposition that holds for
all accepting states. Then, the temporal property is specified by the formula
EF (accept) in the syntax of CTL, or by the formula puX. (accept V ©X) in the
syntax of the modal p-calculus. We can now rephrase the above correspondence
as the following identity between the value [p;] of the variable p; in the least
solution of the Constraint ¢ and the temporal property:

z € [p;] iff (i,z) € EF(accept). (1)

In Section 4, we will generalize this correspondence (which holds also for other
systems than just finite automata, other temporal properties than just reacha-
bility, and, accordingly, other solutions than just the least one).

3 Pushdown Systems

In the previous section, we have shown that a temporal property corresponds to
a specific solution of a Constraint & for a special example. In that example, the
Constraint @ that is associated with the given transition system and the given
temporal property is already in what we define to be the solved form. There is no
reasonable way to simplify it any further; the tests for emptiness or membership
are linear in the size of & (we carry over the standard algorithms for automata).

In contrast, in the case of pushdown systems to be introduced next, the
associated Constraint @ is not in solved form. The purpose of this section is
to illustrate that model checking for pushdown systems (in the style of e.g. [6,
21)]) is done by solving &, i.e. by bringing & into an equivalent solved form. Our
example temporal property is again reachability.

If we view the word z in the second component of a state (i,z) of the tran-
sition system induced by a finite automaton as the representation of a stack,
then each edge (7, a, j) defines a pop operation (at node i, if the top symbol is a,
pop it and go to node j). It is now natural to extend the notion of transition
graphs by allowing edges that define push operations (at node i, push a on top
of the stack and go to node j). Formally, the edge (7,!a, j) from node i to node j
labeled by a together with “!” defines the following state transitions:

state (i, ) can take a transition to state (j,y) if a.z = y holds.

In contrast with the previous case, infinite execution sequences are possible in
the more general kind of transition system.



We extend the notion of regular systems of equations accordingly. Each
edge (i,!a, j) corresponds to an inclusion of the form

pi2{z |y e X (az=y, yE<p)}

which we will write equivalently as the clause

pi(z) + a.x =y, p;(y).

The new kind of clause contains constraints of a new form (the letter a is ap-
pended to the left of the variable z appearing in the head atom).

As before, each edge (i, a, j) translates to a clause p;(z) + = = a.y, p;(y). If
we are again interested in the reachability of accepting states defined as above
(wrt. a given set of nodes marked final), we translate each marking of a node j
as final to a clause p;(z) < = = ¢ (we say that these clauses express the atomic
proposition accept).

The Constraint ¢ whose least solution characterizes the temporal property
EF(accept) in the same sense as in (1) is formed of the conjunction of the two
kinds of clauses translating pop resp. push edges of the transition graph, and of
the third kind of clauses expressing the atomic proposition accept.

We do not know of any algorithms for the tests for emptiness or member-
ship that apply directly to Constraints containing the three kinds of conjuncts.
We now define the solved form of a Constraint @ as the smallest conjunction
containing all conjuncts of ¢ and being closed under the two inference rules
below.

—az =y, q(y)
< ¢'(2) F p(z) < r(z)

p(z)
q(x)
q'(z) < z=ay, r(y) (2)

p(z) < q(z)

q(z) < r(z)

We note that the first of the two inference rules is obtained by applying logical
operations to constraints ¢ over the logical structure of words. The conjunction
of the two clauses p(z) + a.z =y, ¢(y) and ¢(y) + y = a.z, r(z) (the second

clause is obtained by applying a-renaming to the clause p(z) + a.z =y, q(y)
with the universally quantified variables z and y) yields the clause

} F p(z) « r(z)

p(z) « ax =y, y=a.z r(z).

The logical operations that we now apply are: forming the conjunction of con-
straints (here, a.z = y A y = a.2), testing its satisfiability and transforming it
into the equivalent constraint z = z.

Given a Constraint @, we define the Constraint ¢’ as the part of & without
conjuncts of the form p;(z) < a.z =y, p;(y) (i-e. without the clauses that trans-
late push edges). If & is in solved form, then the least solution of @ is equal to
the least solution of @' (as can be shown formally). Hence, the tests of emptiness



or membership for the least solution of @ can be restricted to the Constraint ¢'.
The conjuncts of &' are of the form p;(z) < z = a.y, p;(y) (translating edges of
a finite automaton) or p;(z) « & = ¢ (translating the marking of final nodes)
or p(z) « r(z) (translating “c-transitions of a finite automaton); thus, ¢’ cor-
responds to a finite automaton with e-transitions (for which linear algorithms
are again well known).

The model checking procedure for pushdown systems is simply the Constraint
solving procedure that we define as the iterative addition of new conjuncts ob-
tained by the inference step above (until no more new conjuncts can be added).

The cubic complexity bound for this procedure, which can be described by
inference rules, can be inferred directly using the techniques of McAllester [27];
these techniques work by transferring known complexity bounds for deductive
database queries.

Atomic Propositions specified by Regular Sets. It should be clear by now how we
form the Constraint ¢ corresponding to the temporal property EF(ap ) where
the atomic proposition ap, is given by a family £ = (L;);cq of regular word
languages L; C X* for each node i € @Q; the atomic proposition holds for all
states (i,w) where w € L; (the atomic proposition accept is the special case
where all languages L; consist of the empty word ¢). Each set L; is recognized
by a finite automaton with the set of nodes @; such that @ N Q; = {¢} and L;
is the set of all words accepted from node i (all nodes different from i are new).
We translate the finite automaton into a Constraint @; such that value of the
variable p; in its least solution is L; (all other variables are new). We now form
the Constraint @ as the conjunction of all clauses translating pop and push edges
of the transition graph of the pushdown system and of all Constraints &;.

Automata and Guarded Command Programs. The purpose of Sections 2 and 3is
to convey the intuition behind the general framework through two concrete ex-
amples. Since the general setting uses guarded command programs, we need to
relate those with transition graphs of finite automata. An edge (i,a,j) from
node ¢ to node j labeled a specifies the same transition steps as the following
guarded command:

z =1, head(z) = a | z := j, z := tail(z)

The guarded command program obtained by the translation of a transition graph
has the program variables z (ranging over the finite set @) of program points)
and z (ranging over words denoting the stack contents).

The guarded command above can be represented in another form, where
primed variables stand for the value of the variable after the transition step.
Here, the guard constraint a(z,z) and the action constraint y(z,z,2’,z') are
logical formulas (we indicate their free variables in parenthesis; the variable y is
quantified existentially at the outset of the guarded command).

z=t,z=ay] =342 =y
S AN 2

~~

o(z,z) v(z,2,2' ")



In the setting of Section 4, the guarded command will be translated to the
conjunct p(z,z) «+ z =1, z =a.y, 2’ =j, ' =y, p(z',z') of the Constraint &;
here p is a generic symbol for the (only one) variable of é. This translation is
equivalent to the one given in Section 2, in the sense that p;(z) is equivalent

to p(i, ).

4 Temporal Properties and Constraints &

Given a specification of a transition system (possibly with an infinite state space)
in form of a guarded command program P and of a temporal property in form of
a modal p-calculus formula A, we will construct a Constraint ¢ whose solution
(least, greatest or intermediate, according to the quantifier prefix of A) is the
temporal property.

The program P is a set of guarded commands «a [ y; the free variables of the
guard constraint o are the program variables z1, ..., z,; its existentially quanti-
fied variables may be ‘shared’ with the action constraint vy which is a conjunction
of equalities ' = e(zy1,...,,) with an expression e for each program variable
(we omit any further formalization). We use x for the tuple z1,...,z,.

The formula A consists of a sequence of quantifiers uX or vX applied to
a set of declarations of the form X = §, where the language of expressions §
is defined as follows. We assume the usual restrictions for the (closed, well-
formed) formula A in positive normal form (negation is pushed to the atomic
propositions; as usual, we close the set of atomic propositions under negation).

6 = ap|X1\/X2|X1/\X2|<>X|EIX

The Constraint @ is defined as the conjunction of the following clauses, where px
is a new symbol for a variable of & (for each X occurring in A).

px(x) < ap for X = ap in A,
px (x) ¢+ px, (x) for X =X;VXyin A, :=1,2
¢ = { px(x) «px, (%), px, (%) for X = X; A Xy in A,
px (X) «a, v, pxr(x') for X = OX' inA, ayinP
px(x) < A\; V... a5, 75, px:(x5) for X =0OX' in A

In the last kind of clause, the conjunction A ; ranges over all guarded commands
of the program P; the primed variables in each guarded command are renamed
apart (from x’ to xj; the renamed version of a [ v is a; | 7;), and the universal
quantifier ranges over all variables other than x and x;.3

We assume that the quantifier prefix of A is & X ... &, X, where &; is ei-
ther u or v; i.e., the formula is of the form

A= lel---mem {Xl:§l|z:1,,m}

® The universal quantification in the body of clauses goes beyond the usual notion
of Horn clauses that is used in related approaches (see e.g. [14,16,18,23,29]). It
is needed when successor values can be chosen nondeterministically. The direct-
consequence operator T is still defined.



Then, the free variables of the Constraint ¢ form the tuple (px,,...,px,, ), and
a solution of @ can be represented as a tuple (Si,..., S, ) of sets of states (states
are value tuples (vy,...,v,) for the program variables (z1,...,z,)).

The intended solution ([px,],-.-,[px,,]) of ¢ according to the quantifier
prefix of A is defined as the fixpoint of the logical consequence operator Tg,

([px.],---»[px,.]) = &px, - émpx,, To({Px,5-- -1 Px,.))-

In order to define alternating fixpoints, we reformulate the usual logical con-
sequence operator for constraint logic programs as a fixpoint operator Ty over
tuples (S1,...,S9m) of sets of states (see also [13]); its application is defined by
Ts({S1,...,Sm)) = ((S1,...,S5,,)) where

Si={{(v1,---,vn) | @Upx, (S51) U...Upx,, (Sm) F px; ((v1,...,v0))}

Here, px, (Sk) stands for the conjunction of formulas px, ((w1,...,wy)) where
(wi,...,w,) € Sk (we always implicitely use the identification of sets and unary
predicates px). The symbol F here refers to one single step of logical inference
(the modus ponens rule, essentially). When using clauses with constraints ¢
(here, conjunctions a A 7y of guard and action constraints), the inference step is
taken wrt. the logical structure for the specific constraints (the domain of reals,
the monoid of words, etc.). The alternating fixpoints are well-defined due to our
assumption that A is well-formed; we omit any further formal details.

Theorem 1. Given a specification of a transition system in form of a guarded
command program P and of a temporal property in form of a modal p-calculus
formula A, the set of all states satisfying the temporal property is the value [px,]
of the variable px, under the solution of ® specified by the quantifier prefix of A.

Proof. The proof works by a logical formulation of the construction of an al-
ternating tree automaton as in [1], expressing the next-state relation used there
by the first-order constraints o A v that correspond to the guarded commands.
These constraints are inserted into the tree-automaton clauses (see Figure 1)
without changing their logical meaning; the clauses are then transformed into
the form as they occur in @; again, one can show this transformation logically
correct. [

Reachability for Guarded Command Programs. As an example, we consider the
most simple (and practically most important) temporal property, i.e. reacha-
bility, which is specified by the CTL formula EF(ap) or the modal p-calculus

formula
X =X,V X,

A = pXpXipXe ¢ Xi=ap,
X=0X
Given A and a guarded command program P whose program variables form the
tuple x, we form the Constraint

px (%) < px, (%)

P =  px(x) < px.(x) p U{px,(x) < a, 7, px(x') | a[yin P}
px, (X) ap



Following Theorem 1, we deduce that the set of states satisfying the temporal
property A is the value [px] of the variable px under the least solution of @.
The least solution is the fixpoint upx upx, upx, Te({(Px,Px,PX,)))-

Equivalently, the value [px] is defined by the least solution of ¢’ (defined as
upx Ter(px)), where @' is a simplified version of ¢ defined by

¢ = {px(x) + ap}U{px(x) « o, 7, px | a]yin P}.
Inevitability. The greatest solution of the Constraint
¢" = {px(x) < ap, o, 7, px | a7 in P}

is the property defined by the CLT formula EG(ap) or the modal u-calculus
formula vX {ap A ©X}, which is the dual of the simplest case of a liveness
property, namely inevitability.

Clark’s completion. The conjunction of all clauses p(x) < body,; defining the
predicate p is, in fact, only a syntactic sugaring for the formula that expresses
the logical meaning correctly, namely the equivalence (here, the existential quan-
tification ranges over all variables but the ones in x)

p(x) < \/3 body;.

The two forms are equialent wrt. the least solution. The greatest solution, how-
ever, refers to the second form with equivalences (the so-called Clark’s comple-
tion), or, equivalently, to the greatest fixpoint of T. All intermediate solutions
are defined by intermediate fixpoints of Tg.

5 Solved Forms for Constraints @

We first give a general definition of solved forms (for all cases of data structures)
that is only parametrized by a subclass of solved-form clauses. We will then
instantiate the definition by specifying concrete subclasses for the two basic
cases of data structures.

The idea behind solved-form clauses is that they form a fragment of monadic
second-order logic (over the respective data structures) for which procedures
implementing tests for emptiness and membership are available. Note that it
makes sense here to admit also procedures that are possibly non-terminating
(but hopefully practically useful); e.g., one may trade this possibility with a
termination guarantee for the constraint solving procedure.

Definition 1 (General Solved Form). Given a class of solved-form clauses,
a Constraint @ is said to be in solved form if it is equivalent to the Constraint &'
that consists of all solved-form clauses of ®.

As always, the equivalence between Constraints ¢ and ¢’ refers to the solution
specified by a given fixpoint (least, greatest, ..., possibly alternating).



p(z) + z =a.y, p(y) finite automaton (on words)
plz) — z=¢

p(z) « z = f(y,2), q(y), r(z) tree automaton

p(z)+ z=a

p(z) + z = f(y,2), y =z, q(y), r(2) ‘“equality on brother terms”
p(z) «+ q(z), r(z) alternation

p(z) + —q(z) negation

stratified “weak alternating”

S UPUG. .. automata with parity condition

Fig. 1. Automaton clauses and corresponding notions of automata

Definition 2 (Solved Form (1) for Words). The class of solved-form clauses
defining the solved form of Constraints @ for systems over words consists of all
clauses of one of the three forms:

p(z) <z = ay, q(y),
p(z) «z=¢,

p(z) < q(x).

In Section 2, we have seen that the class of clauses defined above corresponds
to the notion of a finite automaton. (As noted in Section 4, we can write these
clauses using a generic predicate symbol p, i.e. writing p(i, z) instead of p;(z).)

Generally, we say that a class of clauses (then called automaton clauses)
corresponds to a given class of automata if each Constraint ¢ consisting of
such clauses can be translated into an equivalent automaton in the class (i.e.
such that the recognized languages and the values under the specific solution of
the Constraint @ coincide). This kind of correspondence holds between several
notions of automata and their ‘corresponding’ form of automaton clauses (see
Figure 1). In each case, one can define a new class of solved-form clauses.

We have usually in mind automata on finite words or finite trees, but one can
consider also infinite objects (e.g. in order to model cyclic pointer structures),
terms in algebras other than the tree algebra, certain forms of graphs etc..

The results in [13] imply the correspondence between fixpoints and accep-
tance conditions for Constraints ¢ over words and trees; i.e., every alternating
fixpoint specifying a solution of a conjunction of Horn clauses corresponds to a
specific acceptance condition (on infinite runs, i.e. based on the parity condition)
for the ‘corresponding’ automaton over words resp. trees. Thus, if & is in solved
form, algorithms implementing emptiness and membership tests are known.

The correspondence between fixpoints and acceptance conditions for Con-
straints @ generalizes from the domain of words or trees to any constraint do-
main. However, emptiness and membership are undecidable for (any interesting
subclass of) recursive Constraints ¢ over the reals (i.e. with conjuncts of the
form p(x) < ¢, p(x’)), even if we consider the least solution only.

10



This leads to the following definition of non-recursive solved-form clauses.
The definition means that the solution of a Constraint in solved form (2) is
essentially presented as a finite union of infinite sets of states, these sets being
denoted by constraints ¢ (whose free variables form the tuple x = (z1,...,z,)).

Definition 3 (Solved Form (2), for Reals). The class of solved-form clauses
defining the solved form of Constraints @ for systems over reals consists of all
clauses of the form (where ¢ is a constraint over reals)

p(x) < ¢.

Definition 3 is parametric wrt. a given notion of constraints ¢; it can be reformu-
lated for other domains such as the integers or the rationals. The free variables
of the constraints ¢ correspond to the program variables; some program vari-
ables (the control variables) range over a finite domain of program locations; we
can choose that domain as a finite subset of the constraint domain. We have
in mind linear or non-linear arithmetic constraints over the reals or over the
integers, as they are used in model checkers for network protocols with counters,
timed, linear-hybrid or hybrid systems, etc.. The class of constraints is closed
under conjunction and existential quantification; it may or may not be closed
under disjunction. It comes with a test of satisfiability (“= Ix p(x) ?”), entail-
ment (“= @(x) = ¢'(x)?”) and satisfaction for a given tuple of values of the
constraint domain (“[= ¢(v1,...,v,) ?7).

6 Solving Constraints &

A Constraint solving procedure can be defined generically wrt. to a given set of
inference rules: iteratively add direct consequences as conjuncts; start from the
Constraint ¢ constructed for the model checking problem (viz. for the program P
and the temporal formula A); terminate when no more new consequences can
be inferred. It is part of the inference system to specify whether ‘new’ refers to
the semantics of all of @ or the semantics or the syntax of one of the conjuncts
of &.

Thus, a model checking procedure is specified by a set of inference rules.
These define transformations of constraints into equivalent constraints (as always
in this text, equivalence refers to the intended solutions).

The soundness of the model checking procedure holds by definition. The
completeness (the solution of the subpart ' contains already the solution of the
solved form of @) is trivial for the inference rule (3) given below for systems over
reals. It requires more intricate reasoning in the case of the inference rule (2) for
pushdown systems.

A possible alternative to ensure completeness is to check whether the solved-
form clauses subsume all the other ones. To our knowledge, this alternative has
not yet been explored in practical systems.

In the remainder of this section we show that one can express the main ideas
of the model checking procedures for different examples of infinite-state systems
by means of inference rules (the parameter of our generic procedure).

11



In Section 3, we have seen the set of inference rules (2) for pushdown systems.
In the case of more general temporal properties (e.g. expressed with nested
fixpoints), the inference rules must be extended to memorize the priority of the
fixpoint operator for the ‘eliminated’ predicate ¢; this memorization technique
is described in [13]. The solved form is here an alternating Rabin automaton
with e-transitions. Applying known results for those automata, we obtain the
complexity result of [33] in a direct way.

In passing, we observe that the model checking problem for the subclass of
finite-state automata viewed as infinite-state systems (with pop operations only)
has the same complexity.

Real-Valued Systems. The set of inference rules that accounts for the symbolic
model checking procedure for system over reals or integers (based on backward
analysis) consists of the following rule. (Forward analysis is accounted for differ-
ently; see e.g. [22,18]).

!

PO B L g o, g ®
p(x) < ¢

The application of the inference rule includes the test of satisfiability of the
constraint ¢[x'/x] A a A 7. Note our conventions about notation: conjuncts in
clauses are separated by commas; the constraint [x’'/x| is obtained by re-
naming the tuple x (of free variables of ¢) to x’' (recall that the free vari-
ables in the guard constraint o and the action constraint v form the tuples x
and (21,...,2Tpn,2,...,2) , respectively).

Meta-Transitions. The ultimate goal of a constraint solving procedure is to
add enough ‘interesting’ conjuncts, i.e. conjuncts forming the part ¢’ which is
relevant according to the definition of a solved form (i.e., the part to which
the emptiness or memberships tests refer). Other conjuncts may be inferred and
added, however, in order to accelerate the inference of ‘interesting’ conjuncts. To
give a simple example, the guarded command z =¢, 2 >0 z2'=¢, 2’ =z + 1
(an increment loop for the integer variable z at the program location ¢) corre-
sponds to the clause

px(z,2) «— 2=04,2>0,2' =¢ ' =z +1, px(z,2'). (4)

This clause entails the clause (where the variable k is implicitely existentially
quantified in ' = z + k)

px(Z,$)(—Z:€,$ZO, ZIZ& xI:x"_kapX(zaml)' (5)

Boigelot [2] uses Presburger arithmetic in order to derive guarded commands
called meta-transitions corresponding to clauses such as (5). One application of
the inference rule (3) to the clause (5) yields a clause that subsumes all clauses
obtained by its application to the clause in (4) in an infinite iteration.
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Queue Systems. A system with one queue is similar to a pushdown system in
that a dequeue operation corresponds to a pop operation and, hence, can be
translated to a clause of the same form (for better legibility, we return to our
notation of Section 3). A guarded command specifying an enqueue operation,
however, is translated to a clause with the constraint z.a = y expressing the
concatenation to the right of the word z modeling the queue contents.

p(z) < = =ay, q(y) (dequeue).
p(z) < z.a =y, q(y) (enqueue).

Model checking for systems with queues is a topic of ongoing research; see e.g. [2,
3,7]. One possible (quite insufficient) inference rule is

p(z) « z.a =y, q(y)
g(z) «~ z=ay, r(y) p F p(z)+ z==¢.
r(z) « z=¢

This rule can be generalized to any set of clauses specifying a finite automaton
that accepts only words ending with the letter a (here, ¢i,..., ¢, are new).

p(z)ra=y, q(y) )

q1(z) = =b1.y, q2(y) p(z) <~z =y, ¢1(y)

91 (z) =z = b1y, ¢5(y)

: -
qnfl(m) T = bnfl-ya qn(y) )
B @, 1 (2) &z =bn_1.y, ¢, ()
gn(z) — 2z = a.y, r(y) ,
— gn(z)z=¢
r(z)«z=¢ )

This schematic inference rule is used by Boigelot and Godefroid (see [2, 3]).

7 Related Work and Conclusion

Since a fixpoint equation is a constraint over sets of states, the existence of a
characterization of a temporal property by a second-order Constraint is not sur-
prising. Our characterization (in Theorem 1) using clausal syntax with first-order
constraints seems to be the first one, however, that is useful for symbolic model
checking (where ‘symbolic’ refers to first-order constraints) for a very general
class of (nondeterministic) infinite-state systems. The characterization holds for
the full modal p-calculus and for arbitrary guarded command programs and is
thus more general than in related approaches [1, 16, 14,18, 19,21, 23,29] (see also
Footnote 3). In the case of finite-state systems, @ is the alternating automaton
constructed by Kupfermann, Vardi and Wolper [1] in a logical formulation; we
generalize that construction and its extensions for pushdown systems [21] and
for timed automata [19].

We have formalized model checking as a generic constraint-solving procedure
that is parametrized by logical inference rules. This allows us to classify the two

13



basic cases by the solved form, and to express the main ideas of model checking
procedures concisely.

Our formalization provides a formal support for proving a model checking
procedure correct (by checking soundness and completeness of the inference
rules, possibly employing proof-theoretic (as opposed to graph-theoretic) tech-
niques) and for analyzing its complexity (e.g. by writing the inference rules
as bottom-up logic programs and applying syntactic criteria as suggested by
McAllester [27]; see e.g. [20]).

Regarding future work, we note that the emptiness test or the test whether
an initial state (v1,...,v,) is a member of [px] (in the notation of Theorem 1)
can be implemented by applying a refutation procedure to the conjunction of the
formula —3xpx (x) (or of the formula —px ((vq,...,v,)), respectively) with the
Constraint @. This is related to the procedures e.g. in [14, 26, 28,32, 30]. Hybrid
forms combining that procedure and the one given in Section 6 and the relation
to ordered resolution have to be explored.

Acknowledgement. We thank Harald Ganzinger for discussions and for his sug-
gestion of a general solved form, and Giorgio Delzanno and Jean-Marc Talbot
for comments.
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