
Model Checking of Hybrid Systems:
From Reachability towards Stability

Andreas Podelski and Silke Wagner

Max-Planck-Institut für Informatik, Saarbrücken, Germany?

Abstract. We call a hybrid systemstableif every trajectory inevitably ends up
in a given region. Our notion of stability deviates from classical definitions in
control theory. In this paper, we present a model checking algorithm for stability
in the new sense. The idea of the algorithm is to reduce the stability proof for the
whole system to a set of (smaller) proofs for several one-mode systems.

1 Introduction

Consider a heating system for a plant that consists of a heater and an internal engine.
The internal engine may overheat and switch off the heater temporarily, even though
the desired temperature is not yet reached. This means that,starting from low, the tem-
perature will not increase strictly monotonically but it will also decrease during some
(relatively short) periods of time. We do not know when exactly such periods start and
how long they will be. A sample trajectory of the system is shown in Fig. 1.

x

t

30

60

25

20

50

15

10

40

5

0
3020100

Fig. 1.Sample trajectory of the heating system.

When does such a system behaves correctly? Informally, we expect that the heating
system will bring the temperature of the plant to a range between 20 and 25 degrees and
then keep it there, whatever the initial temperatures of theplant and the heater are and
whatever the exact time points are when the controller switches the heater from “on”
to “off” and back. In this paper we introduce a new notion of stability that allows one
to formalize the corresponding notion of correctness. We will then give an algorithm

? This work was partly supported by the German Research Council (DFG) as part of the Tran-
sregional Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS). Seewww.avacs.org for more information.

to verify that a hybrid system is stable in our sense. The algorithm is parameterized by
the constraint solver that it calls as a subroutine in each ofits different steps. Using a
constraint solver for linear constraints, we obtain a specific algorithm for linear hybrid
systems.

The contribution of this paper is threefold. First, our notion of stability fills the
need to specify correctness properties of hybrid systems that cannot be formalized by
“classical” notions like asymptotic or exponential stability [2, 17, 23]. An example of
such a system is the above mentioned heating system. Anotherexample may be an
aircraft that oscillates around an optimal course within a certain allowance. Any realistic
model of such a system does not satisfy a stability property in the classical sense yet
the performance of the aircraft is acceptable.

Second, we use existing reachability tools to reduce the stability proof for the whole
system to a set of proofs for one-mode systems [12, 11, 29]. Wealso show (and this is
the third part of our contribution) how one can carry over techniques that are used in
program analysis for termination proofs to stability proofs for one-mode hybrid sys-
tems [25, 26, 9, 4].

2 Related Work

In this section, we discuss the relation between our and classical notions of stability
in control theory, and the relation between our algorithm and verification methods in
control theory and model checking.

Stability is a central themes in control theory. There are many different variations of
this property, such as asymptotical stability or exponential stability [2, 3, 17, 19, 21].
These classical notions of stability refer to a single equilibrium point. As we have
pointed out in the introduction, stability with respect to one point does not seem to
be always adequate. In the example of the heating system, where the temperature is
specified by upper and lower bounds, such an equilibrium point does not even exist.

The example of the heating system shows that it is not always possible to express
stability with respect to a region in terms of e.g. asymptotical stability. The other way
round, asymptotical stability with respect to a pointx0 is expressible as stability with
respect toeveryregion(x0− ε,x0 + ε), for ε > 0. However, it does not seem clear how
to compare these notions of stability. In particular we don’t see how one could use
existing techniques for proving classical stability (e.g.[2, 3, 18–20]) to prove that a
hybrid system is stable with respect to a given region.

Verification methods for non-reachability properties (or properties that can be re-
duced to non-reachability) for hybrid systems have been intensively studied by both
computer scientists and control theorists [32, 10, 34, 8, 27] and have lead to popular
verification systems such as PHAVer [12], HSolver [29], d/dt [11] and CheckMate [7].
Stability properties (in the classical as well as in our sense) are fundamentally different
from (non-)reachability. The methods used in reachabilityanalysis are inherently not
applicable to stability. This means it is not possible to check stability with existing tools
for reachability.

The open problem that this paper attacks is the question whether model checking
for our new definition of stability is possible. Our results together with preliminary
experiments in a prototypical implementation implicate that this is possible in principle.

3 Preliminaries: Hybrid Systems and Trajectories

In this section, we rephrase the classical definitions of thesyntax and semantics of
hybrid systems [1, 13, 14].

A hybrid system is a tuple (fixed from now on)

A = (L ,V ,(jump̀ ,`′)`,`′∈L ,(f low`)`∈L ,(inv`)`∈L ,(init`)`∈L)

consisting of the following components:

1. a finite setL of locations.
2. a finite setV of real-valued variables, including a variablet that denotes the time.
3. a family(jump̀ ,`′)`,`′∈L of formulas overV representing the possible jumps from

location` to location`′.
4. a family(f low`)`∈L of formulas overV andV̇ specifying the continuous variable

update in locatioǹ . We useV̇ = {ẋ1, ẋ2, . . .} for the set of dotted variables. A
variableẋ represents the first derivative ofx with respect to time, i.e. ˙x = dx/dt.
Especially the derivative of timet with respect to itself is always equal to 1,ṫ = 1.

5. a family(inv`)`∈L of formulas overV representing the invariant condition in loca-
tion `.

6. a family(init`)`∈L of formulas overV representing the initial states of the system.

A state s is a pair(`,ν) consisting of a locatioǹ of L and a valuationν of all
variables over the setV . We write ΣV for the set of all variables valuationsν and
Σ = L ×ΣV for the set of all states. A set of states is also called aregion. A valuation
over the setV̇ of dotted variables is denoted byν̇.

Note that a linear flow formulaf low` can also be specified overV andV ′ (instead
of V andV̇). A formula f low`(x1, . . . ,t,x′1, . . . ,t

′) represents the flow of durationt ′− t
in location `, where the values of the continuous variables change fromx1, . . . ,t to
x′1, . . . ,t

′.

A trajectory τ of a hybrid systemA is a function mapping time pointst in
�+ to

states inΣ such that the following conditions hold:
Let ν be the real-valued component ofτ at time pointt.

1. If τ(0) has locatioǹ , thenτ(0) must satisfy the initial condition of that location,
formally

τ(0) |= init` .

2. If ν is differentiable att, and bothτ(t) and the left-limit ofτ at t,

lim
t′→t−

τ(t ′) ,

have an equal locatioǹ, then the pair(ν, ν̇) of variable valuation and valuation
of the first derivatives satisfies the invariant and the flow condition of location`,
formally

(ν, ν̇) |= inv`∧ f low` .

3. If the left-limit of τ at t has locatioǹ andτ(t) has a different locatioǹ′, then
the real-valued component of the left-limit ofτ at t must satisfy the jump condi-
tion from location` to location`′,formally The values of the continuous variables
remain unchanged during a jump.

lim
t′→t−

τ(t ′) |= jump̀ ,`′ .

The values of the continuous variables remain unchanged during a jump.

Example:

We take a simplified model of a temperature controller with aninternal engine which
we depict in Fig.2.

`1
ẋp = −xp
ẋe = −3xe

ṫ = 1
(xp ≥ 20 ∨ xe ≥ 50)

xp≤21∧ xe≤55

++ `2
ẋp = 100−xp

ẋe = 2(150−xe)
ṫ = 1

(xp ≤ 25 ∧ xe ≤ 80)
xp≥24∨ xe≥75

kk

Fig. 2. Temperature controller.

The temperature of a plant is controlled through a thermostat, which continuously
senses the temperature and turns a heater on and off. The system has threevariables xp,
xe andt,

V = {xp,xe,t} ,

wherexp models the temperature of the plant,xe models the temperature of the internal
engine andt models the total elapse of time. The two states “on” and “off”of the heater
correspond to the twolocations`1 and`2 of the overall system,

L = {`1, `2} .

The temperature fall resp. rise is governed by differentialequations. Namely, in location
`1, where the heater is off, the temperature falls according totheflow condition f loẁ1.

f low`1(xp,xe,t, ẋp, ẋe, ṫ) ≡ (ẋp = −xp ∧ ẋe = −3xe ∧ ṫ = 1)

In location`2, where the heater is on, the temperature rises as specified byf low`2.

f low`2(xp,xe,t, ẋp, ẋe, ṫ) ≡ (ẋp = 100−xp ∧ ẋe = 2(150−xe) ∧ ṫ = 1)

The heater itself has an engine that may overheat. The heateris turned off not only
when the plant gets too hot but also when the engine is overheated. We assume that a
ventilator aids cooling down the engine; that is it cools down faster than it heats up. The
engine is overheated if its temperature exceeds 80 degrees;if it is cooled down to 55
degrees, the heater can again be turned on.

The controller can switch the heater from “off” to “on” and back (which corresponds
to switches between the modes for the overall system) according to thejump conditions
on the edges between the two modes.

jump̀ 1,`2(xp,xe,t) ≡ (xp ≤ 21 ∧ xe ≤ 55)

jump̀ 2,`1(xp,xe,t) ≡ (xp ≥ 24 ∨ xe ≥ 75)

The controllermustswitch the heater from “off” to “on” and thus trigger a switchof
the locations̀ 1 and`2 before theinvariant conditionof the locatioǹ 1 is violated (i.e.
before the temperature of the plant is below 20 and the temperature of the heater is
below 50).

inv`1 ≡ (xp ≥ 20 ∨ xe ≥ 50)

Similarly, the controller must switch from “on” to “off” before the temperature of the
plant is above 25 or the temperature of the heater is above 80.

inv`2 ≡ (xp ≤ 25 ∧ xe ≤ 80)

4 Stability

In this section, we introduce our notion of stability and investigate its expressiveness.

Definition 1 (Stability). We call a hybrid systemstablewith respect to a given region
ϕ if for every trajectoryτ there exists a point of time t0 such that from then on, the
trajectory is always in the regionϕ.

∀τ ∃t0 ∀t ≥ t0 : τ(t) ∈ ϕ

In the example of the heating system, the correctness property we are interested in is
this: whatever the initial temperature of the plant is and whatever the initial temperature
of the heater is and whatever the exact time points are when the controller switches the
heater from “off” to “on” and back, the temperature of the plant will finally be between
20 and 25 degrees (and it may oscillate between these bounds). We can now formalize
this correctness property as the stability wrt. the regionϕ ≡ xp ∈ [20,25].

We can express stability in temporal logic, in LTL or in CTL∗. In CTL∗, for example,
one would say thatall trajectoriesf inally globally are in the regionϕ.

A(FG) ϕ

One might think of verifying stability by applying a CTL∗ model checker to a finite state
abstraction of the given hybrid system. However, there exist no abstraction techniques
that would preserve the stability property (except for trivial cases).

The following CTL formula is stronger than, but not implied by stability.

AF AGϕ

The hybrid system below is stable with respect to the regionx = 0. However, it does
not satisfyAF AG(x = 0); if the system stays in locatioǹ0 forever, it always has the
option to switch to locatioǹ1 where it would go outside the regionx = 0.

x=0

y=0
//

`0
ẋ = 0
ẏ = 0

x=0 //

`1
ẋ = cos(y)

ẏ = 1
x≥ 0

x≤0
//

`2
ẋ = 0
ẏ = 0

One might think of verifying stability wrt.ϕ by using fixpoint iteration in order to
compute the set of states satisfying the formula¬EG¬EF ¬ϕ, which is equivalent to
AF AGϕ. The problem here would be to find practical approximation techniques for
greatest fixpoint iteration which is needed for the computation of¬EG.

We will now introduce yet another property that is stronger than stability (and
stronger thanAF AGϕ). Our algorithm to prove stability is based on this property.

Definition 2 (Strong Attractor). We call a regionϕ a strong attractorof a hybrid sys-
tem A if every trajectoryτ of A will (1) finally reach the attractorϕ and (2) once inϕ it
will never leave the region again.

∃t0 ∈
�+

{

∀t < t0 : τ(t) /∈ ϕ
∀t ≥ t0 : τ(t) ∈ ϕ

Our terminology refers to the notion of attractor in the theory of dynamical systems,
where thebasin of attractionis a specified region (and not necessarily the whole state
space, as with strong attractors) and where trajectories are required to converge towards
the given regionϕ (and need not finally reachϕ).

The regionϕ ≡ x≤ 0 is not a strong attractor for the hybrid system below, which,
however, satisfies the temporal propertyAF AGϕ.

x≤0
//

`0
ẋ = 1
x≤ 1

x≥1
// `1

ẋ = −1

A hybrid system can be stable wrt. a region without having that region as a strong
attractor. For example a slightly damped pendulum that oscillates around the origin
with initial amplitudex = 100 is certainly stable wrt.x < 1, but the regionx < 1 is not
a strong attractor of the system. In fact, this system does not have any strong attractor
at all.

5 Algorithm

In this section we describe in detail our algorithm.
The input of the algorithm is a hybrid systemA and a regionϕ. The output is a

“yes/don’t know” answer. If the the answer is “yes”, the systemA is stable wrt.ϕ. If the
algorithm answers “don’t know”, the system may be stable or unstable.

Again, our algorithm doesn’t check directly whether the system A is stable with
respect to the regionϕ, but it checks whetherϕ is a strong attractor ofA with the whole
state space as its basin of attraction, which implies stability.

The algorithm proceeds in four steps.

Step 1: Transformation A 7→ AT

The first step of the algorithm is to transform the given hybrid system into a new one.
Program transformation has been used recently in program analysis for termination
proofs for finite state systems and infinite programs [4, 9]. For the example of the heat-
ing system, Fig.3 shows the relevant part of the transformedsystem.

`
upp
1

ẋp = −xp ∧ ẋ′p = −xp

ẋe = −3xe ∧ ẋ′e = −3xe

ṫ = 1 ∧ ṫ ′ = 1
(xp ≥ 20 ∨ xe ≥ 50)

xp≤21∧ xe≤55
--

xp ≤ 21 ∧ xe ≤ 55
flag := 2

''NNNNNNNNNNNNNNNNNNNNNNNNNN

`
upp
2

ẋp = 100−xp ∧ ẋ′p = 100−xp

ẋe = 2(150−xe) ∧ ẋ′e = 2(150−xe)
ṫ = 1 ∧ ṫ ′ = 1

(xp ≤ 25 ∧ xe ≤ 80)
xp≥24∨ xe≥75

ll

xp ≥ 24 ∨ xe ≥ 75
flag := 1

wwpppppppppppppppppppppppppp

`low1
ẋp = 0 ∧ ẋ′p = −xp

xe = 0 ∧ ẋ′e = −3xe
ṫ = 0 ∧ ṫ ′ = 1

(x′p ≥ 20 ∨ x′e ≥ 50)

x′p≤21∧ x′e≤55

,, `low2
ẋp = 0 ∧ ẋ′p = 100−xp

ẋe = 0 ∧ ẋ′e = 2(150−xe)
ṫ = 0 ∧ ṫ ′ = 1

(x′p ≤ 25 ∧ x′e ≤ 80)
x′p≥24∨ x′e≥75

kk

Fig. 3. Transformed system.

We will explain next the characteristics of the transformation. Each state of the new
system corresponds to a pair(s,s′) of statess ands′ of the original system. Whenever
the states′ is reachable from the states in the original system, wheres is a state just
after a discrete jump, then the state corresponding to the pair (s,s′) is reachable in the
new system. We refer to this property asbinary reachability, i.e. a pair of states(s,s′) is
called binary reachable in a hybrid systemA, if there exists a trajectoryτ of A such that

1. s is a state onτ at time pointt: s= τ(t);
2. s′ is a state onτ at time pointt ′: s′ = τ(t ′);
3. t < t ′.

Take the statess= (`2; xp = 17.1, xe = 50, t = 0.157) ands′ = (`2; xp = 21.4, xe =
60, t = 0.209). The states can reach the states′ (both the temperature of the plant and
the engine increase in a time period of 5) in a trajectory of the original system; the
trajectory starts in the initial states0 = (`1; xp = 20, xe = 80, t = 0). The state

(`low
2 ; xp = 17.1, xe = 50, t = 0.157, x′p = 21.4, x′e = 60, t ′ = 0.209)

of the new system corresponds to the pair(s,s′). We will now see that this state is
reachable (in the transformed system). The state

(`upp
1 ; xp = 20, xe = 80, t = 0, x′p = 20, x′e = 80, t ′ = 0)

is an initial state of the transformed system; it corresponds to the pair(s0,s0). Looking
at Fig.3 we see that it can reach the state

(`upp
1 ; xp = 17.1, xe = 50, t = 0.157, x′p = 17.1, x′e = 50, t ′ = 0.157)

(namely, when the transformed system stays in the location`upp
1 from time point 0 to

time point 10). That state can jump (by taking a transition into the lower half of the
system) to the state

(`low
2 ; xp = 17.1, xe = 50, t = 0.157, x′p = 17.1, x′e = 50, t ′ = 0.157) .

¿From now on (after a transition into the lower half of the system), only the primed
variables keep changing. Looking at Fig.3 we see that this state can reach (by staying
in the same location) the state that corresponds to the pair(s,s′).

We will formalize next the program transformation. Given a hybrid systemA we
assume that the setL of locations ofA contains m elements̀1 to `m, and the setV
consists ofn+ 1 real-valued variables, namelyx1 to xn andt. The transformed system
AT ,

AT = (L T ,V
T
,(jumpT`,`′)`,`′∈L T ,(f lowT`)`∈L T

,(invT`)`∈L T
,(init T`)`∈L T

) ,

consists of the following components.

1. Variables: The setV T of variables contains all variables ofV , and their primed
versions.

V
T

= {x1, . . . ,xn,t,x
′
1, . . . ,x

′
n,t

′}

= V ∪ V
′

2. Locations: Each location of the original system is duplicated, i.e. a location` of
the original system corresponds to two locations`upp and`low in the transformed
system. We refer to the set of all locations from`upp

1 to `upp
m asL upp,

L
upp = {`upp

1 , . . . , `upp
m }

and to the set of locations from̀low
1 to `low

m asL low.

L
low = {`low

1 , . . . , `low
m }

In addition, the transformed system has a location`init. Altogether, the setL T of
locations of the transformed system consists of the following components:

L
T = {`init} ∪ L upp ∪ L low .

3. Initial conditions : Initially, each variablexi has the same value asx′i and the value
of t is equal to the value oft ′; the system starts iǹinit.

init T` (x1, . . . ,t
′) ≡

{

{(x1, . . . ,t ′) ∈ Σ
V
T : x1 = x′1∧ . . .∧ t = t ′} , if ` = `init

false , otherwise

4. Jump conditions: There are two types of switches in the transformed system. The
first type occurs between two locations ofL upp or between two locations ofL low,
respectively. A jump condition between location`upp

i and location`upp
j for the

variables(x1, . . . ,t,x′1, . . . ,t
′) conforms to the jump condition between the locations

`i and ` j of the original systemA for the variables(x1, . . . ,t). Analogously, a
jump condition between the locations`low

i and `low
j of the transformed system

corresponds to the jump condition from location`i to ` j of the original system
after replacing the variablesx1, . . . ,t by their primed versions.

(jumpT`,`′)(x1, . . . ,t,x′1 . . . ,t ′) ≡

{

(jump̀ ,`′)(x1, . . . ,t) , if `,`′ ∈ L upp

(jump̀ ,`′)(x
′
1, . . . ,t

′) , if `,`′ ∈ L low

The second type of switches are nondeterministic jumps either between the location
`init and a location ofL upp, or between a location ofL upp and a location ofL low.
A jump is always possible from the locatioǹinit to any location ofL upp, if the
invariant condition of the target location is fulfilled.

(jumpT
`init,`′

)(x1, . . . ,t,x
′
1 . . . ,t ′) ≡ (invT`′)(x1, . . . ,t,x

′
1 . . . ,t ′) , if `′ ∈ L upp

A jump from a locatioǹ upp
i to a locatioǹ low

j is possible whenever the jump condi-

tion from `i to ` j is fulfilled in the original system. We use the variableflag /∈ V
T

as a discrete variable that ranges over the set{1, . . . ,m} of indices of the locations
of the system. During the jump, the indexj of the target location is memorized in
the variableflag.

(jumpT
`
upp
i ,`lowj

)(x1, . . . ,t,x
′
1 . . . ,t ′) ≡ (jump̀ i ,` j)(x1, . . . ,t) ∧ flag := j

If there is no jump outgoing from̀i possible in the original system, the jump con-
dition from`upp

i to `low
i in the transformed system istrue.

∀ j 6= i : (jump̀ i ,` j)(x1, . . . ,t) ≡ false ⇒ (jumpT
`
upp
i ,`lowi

)(x1, . . . ,t,x
′
1 . . . ,t ′) ≡ true

All other jump conditions arefalse.

5. Flow conditions: First, in the locations̀ init no flow of the continuous variables
proceeds.

(f lowT`)(x1, . . . ,t
′, ẋ1, . . . , ṫ

′) ≡
∧

x∈V
T

ẋ = 0 , if ` = `init

In each locatioǹ upp
i of L upp, the flow of the variablesx1, . . . ,t in the transformed

system is the same as the flow ofx1, . . . ,t in the original system; each variable
x′1, . . . ,t

′ behaves exactly like its unprimed version, that is the flow ofx′1, . . . ,t
′ is

equal to the flow of the original system after replacing the variablesx1, . . . ,t by
their primed versionsx′1, . . . ,t

′.

(f lowT`)(x1, . . . ,t
′, ẋ1, . . . , ṫ

′) ≡ f low`(x1, . . . , ṫ)∧ f low`(x
′
1, . . . , ṫ

′) , if ` ∈ Lupp

In each location ofL low the values of the variablesx1, . . . ,t are fixed, i.e. the flow
of them is constant. The variablesx′1, . . . ,t

′ keep on evolving as before.

(f lowT`)(x1, . . . ,t
′, ẋ1, . . . , ṫ

′) ≡
∧

x∈V

ẋ = 0∧ f low`(x
′
1, . . . , ṫ

′) , if ` ∈ L low

6. Invariant conditions : For the locatioǹ init, the invariant condition istrue.

(invT`)(x1, . . . ,t,x
′
1, . . . ,t

′) ≡ true , if ` = `init

For a locatioǹ upp
i in L upp (or `low

i in L low, respectively), the invariant condition
overx1, . . . ,t,x′1, . . . ,t

′ is the same as the invariant condition of the original system
A for `i overx1, . . . ,t (or x′1, . . . ,t

′, respectively).

(invT`)(x1, . . . ,t,x
′
1, . . . ,t

′) ≡

{

inv`(x1, . . . ,t) , if ` ∈ L upp

inv`(x′1, . . . ,t
′) , if ` ∈ L low

Step 2: Reachability analysis

In the second step, our algorithm applies a procedure on the transformed system that
computes an overapproximation of the set of all reachable states of the transformed
system. The procedure is implemented by existing reachability tools as PHAVer [12],
d/dt [11] or HSolver [29]. As result we obtain a set of constraints, given by a disjunction
of conjunctions of linear inequalities in case of PHAVer . Each constraint is marked by
the location of the transformed system it is related to. In the example of the heating
system, one constraint in the output of PHAVer is e.g.

`low
2 : flag = 2, xp ≥ 20, −xp ≥−21, xe ≥ 0, −xe ≥−55,

−x′p > −20, −x′e ≥−80, −x′e+300(t ′− t)≥ 245, t ′− t ≥ 1,

x′e−140(t ′− t)≥−90, x′p−75(t ′− t) ≥−75

In our notation, we identify a constraint with the relation that it denotes. We view
a unary relation over the variablesV T of the transformed system as a binary relation

over the values of the variablesV and their primed versionsV ′ of the original system.
Each relation refers to pairs of valuations(ν,ν′), where the pair of states((`,ν),(`′,ν′))
is binary reachable in the original system for some` and`′.

In the remainder of this paper we only talk about binary relations over pairs of
valuations of the original system (and not about unary relations over valuations of the
transformed system) when we refer to relations in the outputof the reachability tool.

Step 3: Computation of a Lyapunov-like function

For the third step of the algorithm we consider the finite subset C of disjuncts in the
output of the reachability tool where the value of the variable flag is equal to the index
of the location the relation is related to. These relations refer to pairs of valuations(ν,ν′)
such that the pair of states((`i ,ν),(`i ,ν′)) is binary reachable in the original system for
the locatioǹ i whose indexi is equal to the value of the variableflag.

We prove for each single relationc of C that its conjunction with the negation of the
regionϕ and witht ′− t ≥ δ

c ∧ ¬ϕ ∧ (t ′− t ≥ δ)

is well-founded, whereδ > 0 is arbitrarily small.Well-foundedmeans that there is no
infinite sequence of statess1,s2,s3, . . . such that each pair of consecutive states(si ,si+1)
satisfies the relation.

To show that a relation is well-founded, the algorithm applies a procedure that
automatically constructs aLyapunov-likefunction for the relation. By a Lyapunov-
like function we mean a functionr over the real-valued variablesV , such that (1)
r(x1, . . . ,xn,t) ≥ 0 for all (x1, . . . ,xn,t), and (2)r(x1, . . . ,xn,t) < r(x′1, . . . ,x

′
n,t

′) for all
(x1, . . . ,xn,t,x′1, . . . ,x

′
n,t

′) that fulfill the considered constraint. For relations that are
given by conjunctions of linear inequalities, the algorithm computes a Lyapunov-like
function using RankFinder [31], a tool for synthesizing linear ranking functions [24, 5,
6].

In section 6, we will prove that this condition suffices to show, that every trajectory
of the original systemA inevitably reaches the regionϕ.

For the sample formula above, we obtain the result “Ranking:r = [1,0,0]” which
means that the Lyapunov-like function

r(xp,xe,t) = xp

is a witness forinevitabilityof the evolution towardsϕ.

Step 4: Invariance

In a final step our algorithm checks the entailment between constraints in the form
below, wherec is a constraint given by the output of the reachability tool in Step 2 of
the algorithm (the renaming of all variables inϕ to their primed versions yieldsϕ′).

ϕ ∧ c |= ϕ′

This check proves that the regionϕ is an invariant of the system, i.e. each evolution of a
state in the region leads to another state that is in the region again. For linear constraints
c the algorithm uses the linear constraint solver clp(Q,R) [16] for this entailment check.

6 Correctness

In this section we investigate the correctness of the algorithm. The algorithm is sound
(its definite answers are correct) and not complete (it may return don’t know answers).

SoundnessThe hybrid systemA is stable wrt.ϕ if (1) every trajectory ofA must reach
the regionϕ after a amount of finite time, and (2) from then on it will neverleave the
region again.

Assume that the setC contains all relationsc in the output of the reachability
analysis for the transformed system (computed in Step 2 of the algorithm) where the
value of the variableflag is equal to the index of the location the relation is related
to. Again, these relations refer to pairs of valuations(ν,ν′) such that the pair of states
((`,ν),(`,ν′)) is binary reachable in the original system for the same location `. We
must show that property (1) holds forA if the conjunction of each relationc in the set
C with the negation of the regionϕ and witht ′− t ≥ δ (for any arbitrary smallδ > 0)

c ∧ ¬ϕ ∧ (t ′− t ≥ δ)

is well founded.
The well-known combinatorial argument used to show that this is indeed sufficient

(and that the algorithm is correct) is standard in the theoryof Büchi automata and has
been used so far only for linear temporal properties of discrete systems [28, 25, 26].

Theorem 1. Assume a hybrid system A and a solution of the reachability analysis for
the transformed system AT such that the set C consists of all relations c of the solution
where the value of the variableflag is equal to the index of the location the relation is
related to.

The hybrid system A reaches a regionϕ in every trajectory after a finite amount of
time if C is a finite set of relations where the conjunction of each relation c of C with
the negation of the regionϕ and with t′− t ≥ δ

c ∧ ¬ϕ ∧ (t ′− t ≥ δ)

is well-founded for any arbitrary smallδ > 0.

Proof. For a proof by contradiction we assume that each relationc∧¬ϕ∧ (t ′− t ≥ δ),
for c in c, is well-founded butA does not reach the regionϕ in every trajectory. Letτ be
a trajectory of the systemA that does not reachϕ.

We consider adiscretizationof the trajectoryτ by a time intervalδ > 0, that is the
infinite sequence

τ(0),τ(δ),τ(2δ), . . .

The sequence is infinite, but we have only finitely many locations. Hence, at least one
location, saỳ , appears infinitely often in the sequence. This means that wecan build
an infinite subsequenceτ0,τ1,τ2, . . . of the sequenceτ(0),τ(δ),τ(2δ), . . ., such that all
states on the subsequence have the same location`.

We now use the assumption thatc is a finite union of relations, say

C = c1 ∪ . . . ∪ ck

such that for each relationc j of c its conjunction with the negation of the regionϕ and
with t ′− t ≥ δ

c j ∧¬ϕ∧ (t ′− t ≥ δ)

is well-founded.
We define a functiong with finite range that maps an ordered pair of indices of the

sequenceτ0,τ1,τ2, . . . to the indexj of the relationc j that contains the corresponding
pair of states.

g(k, l)
def.
= j if (τk,τl) ∈ c j

Furthermore the functiong induces an equivalence relation∼ on pairs of indices of the
sequenceτ0,τ1,τ2,

(k1, l1) ∼ (k2, l2)
def.
⇔ g(k1, l1) = g(k2, l2)

The index of∼ is finite since the range ofg is finite. By Ramsey’s Theorem [28],
there exists an infinite set of indicesK such that all pairs fromK belong to the same
equivalence class. Thus, there existsmandn in K, with m< n, such that for everyk and
l in K, with k < l , we have(k, l) ∼ (m,n). Let k1,k2, . . . be the ascending sequence of
elements ofK. Hence, for the infinite sequenceτk1,τk2, . . . we have

(τki ,τki+1) ∈ c j for all i ≥ 1

By our assumption thatτ does not reachϕ, each stateτki is not in the regionϕ, which
yields that

(τki ,τki+1) ∈ c j ∧¬ϕ for all i ≥ 1

Because we have chosen a discretization ofτ by δ, this is a contradiction to the well-
foundedness ofc j ∧¬ϕ∧ (t ′− t ≥ δ). 2

IncompletenessThe algorithm may fail to prove the stability of a correct system (and
return a don’t know answer) for one of the following three reasons.

First, the output of the existing reachability tools (that we use in Step 2 of our
algorithm) is only an overapproximation of the set of all reachable states (and not the
set itself) due to the fact that reachability in general is undecidable.

The second point is the incompleteness of general well-foundedness tests (used in
Step 3 of the algorithm). Complete tests exist only in some restricted cases (e.g. in the
form of termination checkers for small classes of programs [24, 33]).

The third source of incompleteness is that the algorithm checks whether a regionϕ
is a strong attractor of the system, which is only a sufficientbut not necessary condition
for stability wrt.ϕ; see Section 4.

7 Conclusion and Future Work

Previous notions of stability refer to a single equilibriumpoint. We have introduced a
new notion of stability that refers to a region instead. For some cases of hybrid systems,
this gives the appropriate formalization of their correctness. We have situated our notion
in the landscape of related properties in control theory andmodel checking.

Verification methods for non-reachability properties (or properties that can be re-
duced to non-reachability) for hybrid systems have been intensively studied by both
computer scientists and control theorists [32, 10, 34, 8, 27] and have lead to popular
verification systems such as PHAVer [12], HSolver [29], d/dt [11] and CheckMate [7].

There are many methods for the verification of hybrid systemsfor non-reachability
properties or properties that can be reduced to non-reachability; stability does not be-
long to them. We have given an algorithm to verify stability properties (in the new sense)
for general hybrid systems. The algorithm is parameterizedby the constraint solver that
it calls as a subroutine in each of its different steps. Usinga constraint solver for linear
constraints, we obtain a specific algorithm for linear hybrid systems.

The crucial step of the algorithm is the computation of binary reachability (a precise
enough approximation of the binary reachability relation). Thanks to a source-to-source
transformation, this step can be implemented using an off-the-shelf tool for (unary)
reachability. Future work consists of evaluating existing(or new) reachability tools in
our context, where we use them not for safety but for stability.

In preliminary experiments, we have run the different stepson a number of exam-
ples (using PHAVer [12] and RankFinder [31]), including the example of the heating
system. The experiments indicate a promising potential of our method.

Out of the three sources of incompleteness of our algorithm,two are inherent due to
recursion-theoretic properties. The question is whether the third source of incomplete-
ness can be circumvented by an alternative to our present definition of strong attractors
and ways to compute them.

Acknowledgment

We thank Oded Maler and Thao Dang for numerous insightful discussions on reachabil-
ity and stability analysis for hybrid system, Stefan Ratschan for comments and sugges-
tions on this paper, and Li Hong and Goran Frehse for their help with the first practical
experiments. We thank Oliver Theel, Martin Fränzle and their students for discussions
during the AVACS meetings.

References

1. R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid Automata. An Algorith-
mic Approach to the Specification and Verification of Hybrid Systems. In Hybrid Systems:
Computation and Control, 1993.

2. M.S. Branicky. Stability of hybrid systems: State of the art. In Conference on Decision and
Control, 1997.

3. M.S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hy-
brid systems. In Trans. on Automatic Control, 1998.

4. A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. In Formal
Methods for Industrial Critical Systems (FMICS), 2002.

5. A. Bradley, Z. Manna, and H.B. Sipma. Linear Ranking with Reachability. In Computer
Aided Verification (CAV), 2005.

6. A. Bradley, Z. Manna, and H.B. Sipma. The Polyranking Principle. In International Collo-
quium on Automata, Languages and Programming (ICALP), 2005.

7. A. Chutinan, A. Fehnker, Z. Han, J. Kapinski, R. Kumar, B.H. Krogh, and O. Stursberg.
CheckMate, http://www.ece.cmu.edu/ webk/checkmate.

8. E.M. Clarke, A Fehnker, Z. Han, B. Krogh, O. Stursberg, andM. Theobald. Verification of
Hybrid Systems Based on Counterexample-Guided Abstraction Refinement. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), 2003.

9. B. Cook, A. Podelski, A. Rybalchenko. Termination Proofsfor Systems Code. Submitted
to Conference on Programming Language Design and Implementation (PLDI), 2006.

10. M. Colon, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using non-linear
constraint solving. In Computer Aided Verification (CAV), 2003.

11. T. Dang and O. Maler. d/dt, http://www-verimag.imag.fr/ tdang/Tool-ddt/ddt.html.
12. G. Frehse. PHAVer , http://www.cs.ru.nl/ goranf.
13. T.A. Henzinger. The Theory of Hybrid Automata. In Logic in Computer Science (LICS),

1996.
14. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear hybrid sys-

tems. In Automatic Control, 1998.
15. T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech, http://www-

cad.eecs.berkeley.edu/ tah/HyTech.
16. C. Holzbaur. clp(Q,R), http://www.ai.univie.ac.at/clpqr.
17. D. Liberzon. Switching in Systems and Control. Birkhäuser, 2003.
18. D. Liberzon, and A.A. Agrachev. Lie-algebraic stability criteria for switched systems. In

Control and Optimization, 2001.
19. D. Liberzon, J.P. Hespanha, and A.S. Morse. Stability ofswitched systems: a Lie-algebraic

condition. In Systems and Control Letters, 1999.
20. D. Liberzon, and M. Margaliot. Lie-algebraic stabilityconditions for nonlinear switched

systems and differential inclusions, Systems and Control Letters, to appear.
21. V. Lakshmikantham, S. Leela, and A.A. Martynyuk. Practical Stability of Nonliear Sys-

tems. World Scientific Pub Co Inc, 1990.
22. A. Papachristodoulou, and S. Prajna. On the Construction of Lyapunov Functions using the

Sum of Squares Decomposition. In Conference on Decision andControl (CDC), 2002.
23. S. Pettersson. Analysis and Design of Hybrid Systems. Ph.D. Thesis, Chalmers University

of Technology, Göteborg, Sweden, 1999.
24. A. Podelski, and A. Rybalchenko. A complete Method for the Synthesis of Linear Ranking

Functions. In Verification, Model Checking and Abstract Interpretation (VMCAI), 2004.
25. A. Podelski, and A. Rybalchenko. Transition invariants. In Logic in Computer Science

(LICS), 2004.
26. A. Podelski, and A. Rybalchenko. Transition Predicate Abstraction and Fair Termination.

In Principles of Programming Language (POPL), 2005.
27. S. Prajna, and A. Jadbabaie. Safety Verification of Hybrid Systems Using Barrier Certifi-

cates. In Hybrid Systems: Computation and Control, 2004.
28. F.P. Ramsey. On a problem of formal logic. In Proc. of the London Mathematical Society

30, 1930.
29. S. Ratschan, and Z. She. HSolver, http://www.mpi-sb.mpg.de/ ratschan/hsolver.
30. S. Ratschan, and Z. She. Safety Verification of Hybrid Systems by Constraint Propagation

Based Abstraction Refinement. In Hybrid Systems: Computation and Control, 2005.
31. A. Rybalchenko. RankFinder, http://www.mpi-inf.mpg.de/ rybal/rankfinder.
32. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constructing Invariants for Hybrid Sys-

tems. In Hybrid Systems: Computation and Control, 2004.
33. A. Tiwari. Termination of linear programs. In Computer Aided Verification (CAV), 2004.
34. A. Tiwari, H. Ruess, H. Saidi and N. Shankar. Automatic Generation of Invariants. In Tools

and Algorithms for the Construction and Analysis of Systems(TACAS), 2001.

